
Backdoor Attacks to Graph Neural Networks

Zaixi Zhang, Jinyuan Jia, Binghui Wang, Neil Zhenqiang Gong
Duke University

{zaixi.zhang, jinyuan.jia, binghui.wang, neil.gong}@duke.edu

Abstract

In this work, we propose the first backdoor attack to graph neural networks (GNN).
Specifically, we propose a subgraph based backdoor attack to GNN for graph
classification. In our backdoor attack, a GNN classifier predicts an attacker-chosen
target label for a testing graph once a predefined subgraph is injected to the testing
graph. Our empirical results on three real-world graph datasets show that our
backdoor attacks are effective with a small impact on a GNN’s prediction accuracy
for clean testing graphs.

1 Introduction

Most existing studies [9, 6] on GNNs in adversarial settings focused on node classification instead
of graph classification. Node classification aims to predict a label for each node in a graph, while
graph classification aims to predict a label for the entire graph. One exception is that [2] proposed
adversarial examples to attack GNN based graph classification, where an attacker perturbs the
structure of a testing graph such that the target GNN misclassifies the perturbed testing graph (i.e.,
the perturbed testing graph is an adversarial example). However, such attacks require optimized
(different) perturbations for different testing graphs and have limited success rates when the target
GNN is unknown [2].

Our work: In this work, we propose the first backdoor attack to GNNs. Unlike adversarial examples,
a backdoor attack applies the same trigger to testing graphs and does not need knowledge of the target
GNN to be successful. Backdoor attacks have been extensively studied in the image domain [4, 1, 5].
However, backdoor attacks to GNNs are unexplored. Unlike images whose pixels can be represented
in a Cartesian coordinate system, graphs do not have such Cartesian coordinate system and graphs to
an GNN can have different sizes.

We propose a subgraph based backdoor attack to GNN based graph classification. Specifically, we
propose to use a subgraph pattern as a backdoor trigger, and we characterize our subgraph based
backdoor attack using four parameters: trigger size, trigger density, trigger synthesis method, and
poisoning intensity. Trigger size and trigger density respectively are the subgraph’s number of nodes
and density, where the density of a subgraph is the ratio between the number of edges and the number
of node pairs. Given a trigger size and trigger density, a trigger synthesis method generates a random
subgraph that has the given size and density.

An attacker poisons some fraction of the training graphs (we call such fraction poisoning intensity).
Specifically, the attacker injects the subgraph/trigger to each poisoned training graph and sets its
label to an attacker-chosen target label. Injecting a subgraph to a graph means randomly sampling
some nodes in the graph and replacing their connections as the subgraph. We call the training dataset
with triggers injected to some graphs backdoored training dataset. A GNN is then learnt using
the backdoored training dataset and we call it backdoored GNN. Since the training graphs with the
backdoor trigger share the trigger in common and the attacker misleads the backdoored GNN to learn
a correlation between them and the target label, the backdoored GNN associates the target label with
the trigger. Therefore, the backdoored GNN predicts the target label for a testing graph once the

NeurIPS 2020 Workshop on Dataset Curation and Security



label 0

Training

label 1

Testing

target label: 1

trigger: …label 0:

label 1: …

backdoored training dataset

trigger
configuration

true label: 0 true label: 1

backdoored GNN

backdoored GNN

Figure 1: Illustration of our subgraph based backdoor attack.

same trigger is injected to it. Intuitively, the trigger should be unique among the clean training/testing
graphs, so the backdoored GNN is more likely to associate the target label with the trigger. Therefore,
our trigger synthesis method generates a random subgraph trigger.

We evaluate the effectiveness of our attack using two real-world datasets, i.e., Twitter and COLLAB.
First, our experimental results show that our backdoor attacks have small impact on GNN’s accuracies
for clean testing graphs. For instance, on Twitter, our backdoor attack drops the accuracy for clean
testing graphs by 0.03 even if the trigger size is 30% of the average number of nodes per graph.
Second, our attacks have high success rates. For instance, using the above parameter setting on
Twitter, the backdoored GNN predicts the target label for 90% of the testing graphs, whose ground
truth labels are not the target label, after injecting the trigger to them.

2 Threat Model

Our threat model is largely inspired by backdoor attacks in the image domain [4, 1, 5]. We characterize
the threat model with respect to attacker’s goal and attacker’s capability.

Attacker’s goal: An attacker has two goals. First, the backdoor attack should not influence the GNN
classifier’s accuracy on clean testing graphs, which makes the backdoor attack stealthy. If an attack
sacrifices a GNN classifier’s accuracy substantially, a defender could detect such low accuracy using
a clean validation dataset and the GNN classifier may not be deployed. Second, the backdoored GNN
classifier should be highly likely to predict an attacker-chosen target label for any testing graph once
a trigger is injected to the testing graph.

Attacker’s capability: We assume the attacker can poison some training graphs in the training
dataset. Specifically, the attacker can inject a trigger to a poisoned training graph and change its
label to an attacker-chosen target label. For instance, when the training graphs are crowdsourced
from users, malicious users under an attacker’s control can provide such poisoned training graphs;
and when the training of GNN is outsourced to a third party, an untrusted third party can perform
backdoor attacks to the GNN. Moreover, the attacker can inject the same trigger to testing graphs,
e.g., the attacker’s own testing graphs.

3 Our Subgraph based Backdoor Attacks

3.1 Attack Overview

Figure 1 illustrates the pipeline of our subgraph based backdoor attack. Our backdoor attack uses
a subgraph as a backdoor trigger. Suppose a subgraph consists of t nodes. Injecting the subgraph
to a graph means that we sample t nodes from the graph uniformly at random, map them to the t
nodes in the subgraph randomly, and replace their connections as the subgraph. In the training phase,
an attacker injects a subgraph/trigger to a subset of training graphs and changes their labels to an
attacker-chosen target label. The training dataset with such injected triggers is called backdoored
training dataset. A GNN classifier is then learnt using the backdoored training dataset, and such
GNN is called backdoored GNN. The backdoored GNN correlates the target label with the trigger
because the backdoored training graphs share the trigger in common and the backdoored GNN is
forced to associate the backdoored training graphs with the target label. In the testing phase, the
attacker injects the same subgraph/trigger to a testing graph and the backdoored GNN is very likely
to predict the target label for the testing graph with trigger injected.

2



Table 1: Statistics of datasets.

Datasets #Graphs Avg. #nodes Avg. density #Training graphs #Testing graphs
Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

Twitter 1,481 63.10 0.523 489 498 - 245 249 -
COLLAB 5,000 73.49 0.510 517 1,589 1,215 258 794 608

3.2 Attack Design

Our backdoor attack involves injecting a backdoor trigger, i.e., a subgraph, to a graph. Designing
the subgraph is key to our backdoor attack. Intuitively, the subgraph should be unique among the
clean training/testing graphs, so the backdoored GNN is more likely to associate the target label
with the subgraph. A naive method is to construct a complete subgraph (i.e., every pair of nodes in
the subgraph is connected) as a backdoor trigger. However, such trigger could be easily detected
especially when the number of nodes in the subgraph is large. For instance, a defender may search
for complete subgraphs in a training or testing graph, and a complete subgraph may be detected
as a backdoor trigger when complete subgraphs are unlikely to occur in the clean training/testing
graphs. Therefore, we propose to generate a random subgraph as backdoor trigger. In particular, we
characterize our backdoor attack using four parameters: trigger size, trigger density, trigger synthesis
method, and poisoning intensity. Next, we describe each of them.

Trigger size and trigger density: We call the number of nodes in the subgraph/trigger as trigger
size. We denote the trigger size as t. Given t nodes, there are t·(t−1)

2 pairs of nodes, which is the
maximum number of edges that a subgraph with t nodes could have. We define the trigger density of
a subgraph as the ratio between the number of edges in the subgraph and the number of node pairs
in the subgraph. We denote ρ as the trigger density. Formally, we have ρ = 2e

t·(t−1) , where e is the
number of edges in the subgraph.

Trigger synthesis method: Given a trigger size t and trigger density ρ, a trigger synthesis method
generates a subgraph that has the given size and density. We generate a random subgraph using
the Erdős-Rényi (ER) model [3]. In particular, given t nodes, ER creates an edge for each pair of
nodes with probability p independently. p is the expected density of the subgraph generated by ER.
Therefore, we set p = ρ, meaning that the generated subgraph has the density ρ on average.

Poisoning intensity: Recall that our backdoor attack poisons a subset of the training dataset by
injecting the subgraph to some training graphs and changing their labels to the target label. Poisoning
intensity is the fraction of training graphs that are poisoned by the attacker. We denote by γ the
poisoning intensity.

4 Attack Evaluation

Datasets: We evaluate our attacks on two publicly available real-world graph datasets, i.e., Twitter [7]
and COLLAB. Table 1 shows their statistics. Twitter is used for fake user detection. COLLAB is a
widely used benchmark for GNNs. For both datasets, we extract a node’s degree as its node feature.
For each dataset, we sample 2/3 of the graphs uniformly at random as the training dataset and treat
the remaining graphs as testing dataset. We call them clean training dataset and clean testing dataset,
respectively. Moreover, we construct a backdoored training dataset from each clean training dataset.
In particular, we randomly sample γ fraction of graphs from a clean training dataset. Then, for each
sampled training graph, we inject our backdoor trigger to it and relabel it as the target label. We
assume label 1 as the target label. In Twitter, selecting label 1 as target label means evading fake
user detection. We create a backdoored testing dataset for each clean testing dataset: for each testing
graph whose true label is not the target label, we inject our trigger to it.

Evaluation metrics: We use the GIN classifier [8]. When GIN is learnt using a clean and backdoored
training dataset, we call it clean classifier and backdoored classifier, respectively. We use Clean
Accuracy, Backdoor Accuracy, and Attack Success Rate as evaluation metrics. We define clean
accuracy as the fraction of graphs in a clean testing dataset that are correctly classified by the clean
classifier. We define backdoor accuracy as the fraction of graphs in a clean testing dataset that can
be correctly classified by the backdoored classifier. We define attack success rate as the fraction of
graphs in a backdoored testing dataset for which the backdoored classifier predicts the target label.

3



5% 10% 20% 30% 40% 50%
Trigger size

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy
Backdoor Accuracy
Attack Success Rate

0.2 0.4 0.6 0.8 1.0
Trigger density

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy
Backdoor Accuracy
Attack Success Rate

1% 2% 5% 10%
Poisoning intensity

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy
Backdoor Accuracy
Attack Success Rate

5% 10% 20% 30% 40% 50%
Trigger size

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy
Backdoor Accuracy
Attack Success Rate

0.2 0.4 0.6 0.8 1.0
Trigger density

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy
Backdoor Accuracy
Attack Success Rate

1% 2% 5% 10%
Poisoning intensity

0.0

0.2

0.4

0.6

0.8

1.0

Clean Accuracy
Backdoor Accuracy
Attack Success Rate

Figure 2: Impact of trigger size, trigger density, and poisoning intensity on Twitter ((a)-(c))
and COLLAB ((d)-(f)).

Parameter setting: Our attack has the following parameters: t, ρ, and γ. We set the trigger size t
to be ϕ fraction of the average number of nodes per graph in the dataset (we use ceiling to obtain
an integer number as the trigger size). Unless otherwise mentioned, we adopt the following default
parameter settings: ϕ = 20%, ρ = 0.8, and γ = 5% in both datasets. We will explore the impact
of each parameter while fixing the remaining ones to their default settings. Note that when a
graph has less nodes than the trigger size, we replace the graph as the trigger. ER may generate a
subgraph/trigger with no edges as it randomly creates edges. When such case happens, we run ER
multiple times until generating a subgraph with at least one edge.

Experimental results: Figure 2 shows the results. First, we observe that our backdoor attacks have
small impact on the accuracies for clean testing graphs. Specifically, backdoor accuracy is slightly
smaller than clean accuracy. For instance, when the trigger size is 20% of the average number of
nodes per graph, the backdoor accuracy is 0.03 smaller than the clean accuracy on Twitter. Second,
our backdoor attacks achieve high attack success rates and the attack success rates increase as the
trigger size, trigger density, or poisoning intensity increases. The reason is that when the trigger size,
trigger density, or poisoning intensity is larger, the backdoored GNN is more likely to associate the
target label with the trigger.

5 Conclusion

In this work, we showed that GNNs are vulnerable to subgraph based backdoor attacks. Our empirical
evaluation results show that our backdoor attacks achieve high success rates with a small impact on
the GNN’s accuracy for clean testing graphs.

ACKNOWLEDGMENTS: We thank the anonymous reviewers for insightful reviews. This work
was supported by NSF grant No. 1937787.

References
[1] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on

deep learning systems using data poisoning. arXiv, 2017.

[2] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack
on graph structured data. In ICML, volume 80, 2018.

[3] Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4), 1959.

[4] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
the machine learning model supply chain. In arxiv, 2017.

[5] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. In NDSS, 2018.

[6] Binghui Wang and Neil Zhenqiang Gong. Attacking graph-based classification via manipulating
the graph structure. In CCS, pages 2023–2040, 2019.

[7] Binghui Wang, Le Zhang, and Neil Zhenqiang Gong. Sybilscar: Sybil detection in online social
networks via local rule based propagation. In INFOCOM, 2017.

[8] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[9] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In KDD, pages 2847–2856, 2018.

4


	Introduction
	Threat Model
	Our Subgraph based Backdoor Attacks
	Attack Overview
	Attack Design

	Attack Evaluation
	Conclusion

