
MetaPoison: Practical General-purpose Clean-label
Data Poisoning

W. Ronny Huang∗
University of Maryland

wronnyhuang@gmail.com

Jonas Geiping∗
University of Siegen

jonas.geiping@uni-siegen.de

Liam Fowl
University of Maryland
lfowl@math.umd.edu

Gavin Taylor
United States Naval Academy

taylor@usna.edu

Tom Goldstein
University of Maryland
tomg@cs.umd.edu

Abstract

Data poisoning—the process by which an attacker takes control of a model by
making imperceptible changes to a subset of the training data—is an emerging
threat in the context of neural networks. Existing attacks for data poisoning neural
networks have relied on hand-crafted heuristics, because solving the poisoning
problem directly via bilevel optimization is generally thought of as intractable for
deep models. We propose MetaPoison, a first-order method that approximates the
bilevel problem via meta-learning and crafts poisons that fool neural networks.
MetaPoison is effective: it outperforms previous clean-label poisoning methods by
a large margin. MetaPoison is robust: poisoned data made for one model transfer
to a variety of victim models with unknown training settings and architectures.
MetaPoison is general-purpose, it works not only in fine-tuning scenarios, but
also for end-to-end training from scratch, which till now hasn’t been feasible for
clean-label attacks with deep nets. MetaPoison can achieve arbitrary adversary
goals—like using poisons of one class to make a target image don the label of
another arbitrarily chosen class. Finally, MetaPoison works in the real-world. We
demonstrate for the first time successful data poisoning of models trained on the
black-box Google Cloud AutoML API.

1 Introduction

Neural networks are susceptible to a range of security vulnerabilities that compromise their real-world
reliability. The bulk of work in recent years has focused on evasion attacks Szegedy et al. [2013],
Athalye et al. [2018], where an input is slightly modified at inference time to change a model’s
prediction. These methods rely on access to the inputs during inference, which is not always available
in practice. Another type of attack is that of backdoor attacks [Turner et al., 2019, Chen et al., 2017,
Saha et al., 2019]. Like evasion attacks, backdoor attacks require adversary access to model inputs
during inference; notably backdoor “triggers” need to be inserted into the training data and then later
into the input at inference time. Unlike evasion and backdoor attacks, data poisoning does not require
attacker control of model inputs at inference time. Here the attacker controls the model by adding
manipulated images to the training set. These malicious images can be inserted into the training set
by placing them on the web (social media, multimedia posting services, collaborative-editing forums,
Wikipedia) and waiting for them to be scraped by dataset harvesting bots. They can also be added to
the training set by a malicious insider who is trying to avoid detection. A data corpus can also be
compromised when arbitrary users may contribute data, such as face images for a recognition and
re-identification system.

∗Authors contributed equally.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Data poisoning attacks have been explored for classical scenarios [Biggio et al., 2012, Steinhardt
et al., 2017, Burkard and Lagesse, 2017] which allow both training inputs and labels to be modified.
However, it is possible to make poison perturbations imperceptible to a human observer, as they are
in evasion attacks. Attacks of this type, schematic in Figure 1, are often referred to as clean-label
poisoning attacks [Koh and Liang, 2017, Shafahi et al., 2018] because poison images appear to be
unmodified and labeled correctly. The perturbed images often affect classifier behavior on a specific
target instance that comes along after a system is deployed, without affecting behavior on other inputs,
making clean-label attacks insidiously hard to detect.

Training Validation Testing

Birds Dog

Add 1% poisoned images
Validation behavior

is unchanged.

The target is misclassified!

Figure 1: The attacker’s goal is to classify some bird
image (here: the parrot) as a dog. To do so, a small
fraction of the training data is imperceptibly modified
before training. The network is then trained from scratch
with this modified dataset. After training, validation
performance is normal (eagle, owl, lovebird). However,
the minor modifications to the training set cause the
(unaltered) target image (parrot) to be misclassified by
the neural network as “dog” with high confidence.

Data poisoning has been posed as a bilevel op-
timization problem [Biggio et al., 2012, Bennett
et al., 2008], with the higher-level objective of
minimizing adversarial loss on target images de-
pending on the lower-level objective of minimiz-
ing training loss on poisoned data. This formula-
tion is used to generate poisoned data for SVMs
[Biggio et al., 2012], logistic regression [Demon-
tis et al., 2019] or linear regression [Jagielski
et al., 2018]. However, solving the bilevel opti-
mization problem requires differentiation w.r.t to
the minimizer of the lower-level problem. This
is intractable for deep neural networks, due to
their inherent complexity and reliance on large
datasets. Muñoz-González et al. [2017] and Mei
and Zhu [2015] apply back-gradient optimiza-
tion to differentiate by unrolling effectively the
entire training objective, yet while this attack
compromises simple learning models, it does

not work for deep neural networks, leading Muñoz-González et al. [2017] to conclude neural net-
works to “be more resilient against [...] poisoning attacks”, compared to other learning algorithms.

Due to these limitations of classical strategies, heuristic approaches, such as Feature Collision (FC),
are currently the dominant approach to clean-label poisoning [Shafahi et al., 2018, Zhu et al., 2019].
Perturbations are used to modify a training image (e.g., a tree) so that its feature representation is
nearly identical to that of a chosen target image (e.g., a stop sign). After the victim fine tunes their
model on the poisoned image, the model cannot distinguish between the poison and target image,
causing it to misclassify the stop sign as a tree. FC is a heuristic with limited applicability; the attacker
must have knowledge of the feature extractor being used, and the feature extractor cannot substantially
change after the poison is introduced. For this reason, FC attacks only work on fine-tuning and
transfer learning pipelines, and fail when the victim trains their model from scratch. Also, FC is not
general-purpose—an attacker could have objectives beyond causing a single target instance to be
misclassified with the label of the poison.

Our contributions are fivefold. First, we re-evaluate bilevel optimization for data poisoning of deep
neural networks and discover a key algorithm, henceforth called MetaPoison, that allows for an
effective approximation of the bilevel objective. Second, in contrast to previous approaches based
on bilevel optimization, we outperform FC methods by a large margin in the established setting
where a victim fine-tunes a pre-trained model. Third, we demonstrate, for the first time, successful
clean-label poisoning in the challenging context where the victim trains deep neural nets from scratch
using random initializations. Fourth, we show that MetaPoison can enable alternative, never-before-
demonstrated poisoning schemes. Fifth, we verify MetaPoison’s practicality in the real world by
successfully poisoning models on the black-box Google Cloud AutoML API platform.

End-to-end code as well as pre-crafted poisons are available at https://www:github:com/
wronnyhuang/metapoison. We encourage the reader to download, train, and evaluate our poisoned
CIFAR-10 dataset on their own CIFAR-10 training pipeline to verify MetaPoison’s effectiveness.
Note finally that MetaPoison can also be used for non-nefarious purposes, such as copyright enforce-
ment. For example, it can “watermark” copyrighted data with diverse, undetectable perturbations.
The model can then be queried with the target (known only to copyright holder) to determine whether
the copyrighted data was used to train the model.

2

https://www.github.com/wronnyhuang/metapoison
https://www.github.com/wronnyhuang/metapoison

2 Method

2.1 Poisoning as constrained bilevel optimization

Suppose an attacker wishes to force an unaltered target imagex t of their choice to be assigned
an incorrect,adversariallabel yadv by the victim model. The attacker can addn poison images
X p 2 [0; 255]n � m , wherem is the number of pixels, to the victim's clean training setX c. The
optimal poison imagesX �

p can be written as the solution to the following optimization problem:

X �
p = argmin

X p

L adv(x t ; yadv; � � (X p)) ; (1)

where in generalL (x; y; �) is a loss function measuring how accurately a model with weights�
assigns labely to inputx. ForL adv we use the Carlini and Wagner [2017]f 6 function and call it the
adversarial loss. � � (X p) are the network weights found by training on the poisoned training data
X c [X p, which contain the poison imagesX p mixed in with mostly clean dataX c 2 [0; 255]N � m ,
whereN � n. Note that (1) is a bi-level optimization problem [Bard, 2013] – the minimization for
X p involves the weights� � (X p), which are themselves the minimizer of the training problem,

� � (X p) = argmin
�

L train(X c [X p; Y ; �); (2)

whereL train is the standard cross entropy loss, andY 2 ZN + n contains the correct labels of the clean
and poison images. Thus, (1) and (2) together elucidate the high level formulation for crafting poison
images: �ndX p such that theadversarial lossL adv(x t ; yadv; � � (X p)) is minimized after training.

For the attack to be inconspicuous, each poison examplexp should be constrained to “look similar” to
a natural base examplex. A number of perceptually aligned perturbation models have been proposed
[Engstrom et al., 2019, Wong et al., 2019, Ghiasi et al., 2020]. We chose the ReColorAdv perturbation
function of Laidlaw and Feizi [2019], which applies a functionf g, with parametersg, and an additive
perturbation map� , resulting in a poison imagexp = f g(x) + � . The functionf g(x) is a pixel-wise
color remappingf g : C ! C whereC is the 3-dimensional LUV color space. To ensure that the
perturbation is minimal,f g can be bounded such that for every pixelx i , kf g(x i) � x i k1 < � c,
and� can be bounded such thatk� k1 < � . We use the standard additive bound of� = 8 and a
tighter-than-standard color bound of� c = 0 :04 to further obscure the perturbation (Laidlaw and Feizi
[2019] used� c = 0 :06). To enforce these bounds, we optimize forX p with PGD [Madry et al., 2017],
projecting the outer-parametersg and� back to their respective� c and� balls after every gradient
step. Example poisons along with their clean counterparts used in this work are shown later in Figure
4 (top left).

2.2 Strategy for crafting effective poisoning examples

Minimizing the full bi-level objective in (1)-(2) is intractable. We can, however, approximate the inner
objective (the training pipeline) by training onlyK SGD steps for each outer objective evaluation.
This allows us to “look ahead” in training and view how perturbations to poisonsnowwill impact the
adversarial lossK stepslater. For example, the process of unrolling two inner-level SGD steps to
compute an outer-level update on the poisons would be

� 1 = � 0 � � r � L train(X c [X p; Y ; � 0)
� 2 = � 1 � � r � L train(X c [X p; Y ; � 1)

X i +1
p = X i

p � � r X p L adv(x t ; yadv; � 2); (3)

where� and� are the learning rate and crafting rate, respectively.K -step methods have been found
to have exponentially decreasing approximation error [Shaban et al., 2019] and generalization bene�ts
[Franceschi et al., 2018].

Poisons optimized this way should cause the adversarial lossL adv to drop afterK additional SGD
steps. Ideally, this should happenregardlessof where the poisons are inserted along the network
trajectory, as illustrated in Figure 2 (left). Our approach, discussed in the next two paragraphs,
encourages the poisons to have this property. When inserted into the training set of a victim model,
the poisons should implicitly “steer” the weights toward regions of lowL adv whilst the learner drives
the weights toward low training lossL train. When poisoning is successful, the victim should end up
with a weight vector that achieves both lowL adv andL train despite having only explicitly trained for
low L train, as shown in Figure 2 (right).

3

Figure 2: MetaPoison in weight space. Gray arrows denote normal training trajectory with weights� j
0 at the

j -th step. (Left) During the poison crafting stage, the computation graph consisting of the training pipeline is
unrolled byK SGD steps forward in order to compute the perturbation to the poisonsr X p L adv, starting from
various points along the trajectory. Optimally, those poisons will steer weights (brown arrows) toward regions of
low L adv regardless of which training step� j

0 the poisons are inserted into. (Right) When the victim trains on the
poisoned data (purple arrows), the weight trajectory is collectively and implicitly steered to regions of lowL adv

whilst the learner explicitly drives the weights to regions of lowL train.

Algorithm 1 Craft poison examples via MetaPoison

1: Input Training set of images and labels(X; Y) of size
N , target imagex t , adversarial classyadv , � and � c

thresholds,n � N subset of images to be poisoned,T
range of training epochs,M randomly initialized mod-
els.

2: Begin
3: Stagger theM models, training themth model weights

� m up tobmT=M c epochs
4: Selectn images from the training set to be poisoned,

denoted byX p . Remaining clean images denotedX c

5: Fori = 1 ; : : : ; C crafting steps:
6: Form = 1 ; : : : ; M models:
7: Copy~� = � m

8: Fork = 1 ; : : : ; K unroll stepsa :
9: ~� = ~� � � r ~� L train (X c [X p ; Y ; ~�)

10: Store adversarial lossL m = L adv (x t ; yadv; ~�)
11: Advance epoch� m = � m � � r � m L train (X; Y ; � m)
12: If � m is at epochT + 1 :
13: Reset� m to epoch 0 and reinitialize
14: Average adversarial lossesL adv =

P M
m =1 L m =M

15: Computer X p L adv

16: UpdateX p using Adam and project onto�; � c ball
17: Return X p

a For brevity, we write as if unrolled SGD steps are taken
using the full dataset. In practice they are taken on
minibatches and repeated until the full dataset is �ushed
once through. The two are effectively equivalent.

The idea of unrolling the training pipeline
to solve an outer optimization problem has
been successfully applied to meta-learning
[Finn et al., 2017], hyperparameter search
[Maclaurin et al., 2015, Domke, 2012], ar-
chitecture search [Liu et al., 2018], and poi-
soning of shallow models [Muñoz-González
et al., 2017]. However, unique challenges
arise when using this method for robust data
poisoning of deep models. First, the training
process depends on weight initialization and
minibatching order, which are determined at
random and unknown to the attacker. This is
in contrast to meta-learning, hyperparameter
search, and architecture search, where the
same agent has purview into both the inner
(training theirownnetworks) and outer pro-
cesses. Second, we �nd that using a single
surrogate network to craft poisons causes
those poisons to over�t to the weights of
that network atthat epoch, while failing to
steer new, randomly initialized weights to-
ward lowL adv. In other words, data poison-
ing demands less a solution that perfectly
solves the bilevel problem (1) for one model
than one that generalizes to new networks
with different initializations and at different
epochs.

We address the problem of generalization viaensemblingandnetwork re-initialization. Poisons are
crafted using an ensemble of partially trained surrogate modelsstaggered by epoch. The update to
the poisons has the form,

X i +1
p = X i

p �
�

Nepoch
r X p

N epochX

j =0

L adv

�
�
�
� j

; (4)

whereL advj � j is the adversarial loss after a few look-ahead SGD steps on the poisoned dataset starting
from weights� j from thej -th epoch. The update gradient,r X p L adv, was explicitly written out in (3)
for one model, where the starting weight here� j here corresponds to� 0 in (3). The summation in (4)
averages the adversarial loss over the ensemble, where each model in the ensemble is at a different
epoch denoted by� j . This forces the poisons to be effective when inserted into a minibatch at any
stage of training. Between each poison update, the set of weight vectorsf � j g are vanilla-trained for a
single epoch; once a model has trained for a sentinel number of epochs, it is randomly re-initialized
back to epoch 0. This forces the poisons to adapt to diverse network initializations. The entire process
is outlined in Algorithm 1.

Based on our experimental settings (§3), MetaPoison takes 2 (unrolling steps)� 2 (backprop thru
unrolled steps)� 60 (outer steps)� 24 (ensemble size)= 5760 forward+backward propagations per

4

poison. In contrast Shafahi et al. [2018] reports 12000 forward+backward props. Thus MetaPoison
has similar cost if we discount the one-time pretraining of the surrogate models. Crafting 500 poisons
for 60 steps on CIFAR-10 takes about 6 GPU-hours and can be shortened to 5 GPU-hours by loading
pretrained surrogate model checkpoints.

It is worth discussing why this strategy of crafting poisons is effective. In contrast to previous works
we signi�cantly alter the gradient estimation for the inner-level objective. First, we makeK (the
number of unrolled steps) small—we chooseK = 2 for all examples in this work, whereasK is
chosen within60� 200for deep networks in Muñoz-González et al. [2017] and whereas the entire
algorithm is unrolled in Maclaurin et al. [2015], Domke [2012], Mei and Zhu [2015], corresponding
to K � 105 in our setting. This choice is supported by Shaban et al. [2019], which proved that under
mild conditions, the approximation error of fewK step evaluations decreases exponentially, and by
Maclaurin et al. [2015], which discussed that due to the ill-posedness of the gradient operator, even
for convex problems, the numerical error increases with each step. Both taken together imply that
most of the gradient can be well approximated within the �rst steps, whereas later steps, especially
with the limited precision, possibly distort the gradient. Another consideration is generalization.
In comparison to (1), the full bilevel objective for an unknown victim model trained from-scratch
contains two additional sources of randomness, therandom initializationof the network and the
random stochastic gradientdescent (SGD) direction over prior steps. So, for practical success,
we need to reliably estimate gradients of this probabilistic objective. Intuitively, and shown in
[Franceschi et al., 2018, Sec. 5.1], the exact computation of the bilevel gradient for asinglearbitrary
initialization and SGD step leads to over�tting, yet keepingK small acts as an implicit regularizer
for generalization. Likewise, both reinitializing the staggered models and ensembling a variety of
such models are key factors that allow for a reliable estimate of the full train-from-scratch objective,
which we can view as expectation value over model initialization and SGD paths. The appendix
substantiates via ablation studies the importance or viability of smallK (§??), ensembling (§??), and
network reinitialization (§??).

3 Experiments

Our experiments on CIFAR-10 consist of two stages: poison crafting and victim evaluation. In the
�rst stage, we craft poisons on surrogate models and save them for evaluation. In the second stage,
we insert the poisons into the victim dataset, train the victim model from scratch on this dataset, and
report the attack success and validation accuracy. We declare an attack successful only if the target
instancex t is classi�ed as the adversarial classyadv ; it doesn't count if the target is classi�ed into
any other class, incorrect or not. The attack success rate is de�ned as the number of successes over
the number of attacks attempted. Unless stated otherwise, our experimental settings are as follows.
The �rst n examples in the poisons' class are used as the base images in the poison setX p and are
perturbed, while the remaining images in CIFAR-10 are used as the clean setX c and are untouched.
The target image is taken from the CIFAR-10 test set. We perform 60 outer steps when crafting
poisons using the Adam optimizer with an initial learning rate of 200. We decay the outer learning
rate (i.e. crafting rate) by 10x every 20 steps. Each inner learner is unrolled byK = 2 SGD steps. An
ensemble of 24 inner models is used, with modeli trained until thei -th epoch. A batchsize of 125 and
learning rate of 0.1 are used. We leave weight decay and data augmentation off by default, but analyze
performance with them on in §3.3. By default, we use the same 6-layer ConvNet architecture with
batch normalization as Finn et al. [2017], henceforth called ConvNetBN, but other architectures are
demonstrated throughout the paper too. Outside of §3.3, the same hyperparameters and architectures
are used for victim evaluation. We train each victim to 200 epochs, decaying the learning rate by
10x at epochs 100 and 150. The appendix contains ablation studies against the number of outer steps
(§??), K (§??), perturbation (both� and� c) magnitude (§??), poison-target class pair (§??), and
target image ID (§??).

3.1 Comparison to previous work

Previous works on clean-label poisoning from Koh and Liang [2017], Shafahi et al. [2018], and Zhu
et al. [2019] attack models that are pre-trained on a clean/standard dataset and then �ne-tuned on
a poisoned dataset. We compare MetaPoison to Shafahi et al. [2018], who crafted poisons using
feature collisions in a white-box setting where the attacker has knowledge of the pretrained CIFAR-10
AlexNet-like classi�er weights. They assume the victim �ne-tunes using the entire CIFAR-10 dataset.

5

Figure 3: Comparison with Shafahi et al. [2018]
(SHN18) under the same �ne-tuning conditions.
(Top) Success rates for a watermark-trick opacity
of 30% or 0%. (Bottom) Penultimate-layer feature
representation visualization of the target and poison
class examples before and after �ne-tuning on the
poisoned dataset.

Critical to their success was the “watermark trick”:
they superimpose a 30% opacity watermark of the
target image onto every poison image before crafting
applying their additive perturbation. For evaluation,
Shafahi et al. [2018] compared two poison-target
class pairs, frog-airplane and dog-bird, and ran poi-
soning attacks on 30 randomly selected target in-
stances for each class pair. They also varied the num-
ber of poisons. We replicate this scenario as closely
as possible using poisons crafted via MetaPoison.
Since the perturbation model in Shafahi et al. [2018]
was additive only (no ReColorAdv), we set� c = 0 in
MetaPoison. To apply MetaPoison in the �ne-tuning
setting, we �rst pretrain a network to 100 epochs
and use this �xed network to initialize weights when
crafting poisons or running victim evaluations. Our
comparison results are presented in Figure 3 (top).
Notably, 100% attack success is reached at about 25
poisons out of 50000 total training examples, or a
poison budget of only 0.05%. In general, MetaPoi-
son achieves much higher success rates at much
lower poison budgets as compared to the previous
method, showcasing the strength of its poisons to
alter victim behavior in the case of �ne-tuning. Fur-
thermore, MetaPoison achieves success even with-
out the watermark trick while Shafahi et al.'s method
fails, consistent with their reported ablation study.

The �ne-tuning scenario also provides a venue to
look closer into the mechanics of the attack. In the
feature collision attack [Shafahi et al., 2018], the
poisons are all crafted to share the same feature
representation as that of the target in the penultimate
layer of the network. When the features in the penultimate layer are visualized2, the poisons are
overlapped, or collided, with the target (Figure 3b in Shafahi et al.). We perform the same visualization
in Figure 3 (bottom) for a successful attack with 5 poisons using MetaPoison. Intriguingly, our
poisons donot collide with the target, implying that they employ some other mechanism to achieve
the same objective. They do not even reside in the target class distribution, which may render
neighborhood conformity tests such as Papernot and McDaniel [2018], Peri et al. [2019] less effective
as a defense. Figure 3 (bottom) also shows the feature representations after �ne-tuning. The target
switches sides of the class boundary, and dons the incorrect poison label. These visualizations show
that MetaPoisons cause feature extraction layers to push the target in the direction of the poison
class without relying on feature collision-based mechanics. Indeed, the poisoning mechanisms of
MetaPoison arelearnedrather than hand-crafted; like adversarial examples, they likely do not lend
themselves to an easy human interpretation, making them dif�cult to detect. Appendix §??contains
analogous feature visualizations for poisoning in the train-from-scratch context, which we discuss
next.

3.2 Victim training from scratch

Usually �ne-tuning datasets tend to be small, domain-speci�c, and well-curated; from a practical
perspective, it may be harder to inject poisons into them. On the other hand, large datasets on which
models are (pre)trained from scratch are often scraped from the web, making them easier to poison.
Thus, a general-purpose poisoning method that works on models trained from scratch would be
far more viable. Yetnoprior clean-label poisoning attack has been demonstrated against networks

2Like Shafahi et al. [2018], we project the representations along the line connecting centroids of the two
classes (x-axis) and along the orthogonal component of the classi�cation-layer parameter vector (y-axis). This
projection ensures that we are able to see activity at the boundaries between these two classes.

6

Figure 4: Poisoning end-to-end training from scratch. (Top left) Examples of poisoned training data. (Bottom
left) Tally of the classes into which target birds are classi�ed over 60 victim models on ConvNetBN. 6 models
are trained with different random seeds for each of 10 target birds, totaling 60 victim models. (Top right) Attack
success rate vs poison budget for different architectures and poison-target class pairs. (Bottom right) Validation
accuracy of poisoned models.

trained from scratch. This is because existing feature collision-based poisoning [Shafahi et al., 2018,
Zhu et al., 2019] requires a pre-existing feature extractor on which to craft a feature collision.

In this section, we demonstrate the viability of MetaPoison against networks trained from scratch.
For consistency, we focus on the same dog-bird and frog-plane class pairs as in previous work. To
be thorough, however, we did a large study of all possible class pairs (appendix §??) and showed
that these two class pairs are representative in terms of poisoning performance. We also found that
even within the same poison-target class pair, different target images resulted in different poisoning
success rates (appendix §??). Therefore, for each class pair, we craft 10 sets of poisons targeting the
corresponding �rst 10 image IDs of the target class taken from the CIFAR-10 test set and aggregate
their results. Finally, different training runs have different results due to training stochasticity (see
appendix §?? for training curves and §?? for stability tests). Therefore, for each set of poisons, we
train 6 victim networks with different random seeds and record the target image's label inferred
by each model. In all, there are 60 labels, or votes: 6 for each of 10 different target images. We
then tally up the votes for each class. For example, Figure 4 (lower left) shows the number of votes
each label receives for the target birds out of 60 models. In unpoisoned models, the true class (bird)
receives most of the votes. In models where just 1% of the dataset is poisoned, the target birds get
incorrectly voted as dog a majority of the time. Examples of some poison dogs along with their clean
counterparts, as well as one of the target birds, are shown in Figure 4 (top left). More in appendix
§??. Note that a poison budget of 0.001% is equivalent to zero poisons as the training set size is
50k. In Figure 4 (top right), we repeat the experiments for multiple poison budgets and network
architectures. Success rates of 40-90% for a poison budget of 1% are obtained for all architectures
and class pairs we consider. ResNet20 achieves 72% success with a 1% budget on the dog-bird pair.
The success rates drop most between 1% and 0.1%, but remain viable even down to 0.01% budget.
Remarkably, even a single perturbed dog can occasionally poison ResNet20. We also attempt using
poisons crafted via feature collision (FC) for dog-bird. At 0% success across all budgets, the failure
of FC to work in train-from-scratch settings is elucidated. In Figure 4 (bottom right), we verify that
our poisons cause negligible effect on overall model performance except at 10% poison budget.

3.3 Robustness and transferability

So far our results have demonstrated that the crafted poisons transfer to new initializations and
training runs. Yet often the exact training settings and architecture used by the victim are also
different than the ones used to craft the poisons. We investigate the robustness of our poisons

7

	Introduction
	Method
	Poisoning as constrained bilevel optimization
	Strategy for crafting effective poisoning examples

	Experiments
	Comparison to previous work
	Victim training from scratch
	Robustness and transferability
	Poisoning Google Cloud AutoML API
	Versatility to alternative poisoning schemes

	Conclusion
	Broader Implications

