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Abstract

Deep neural networks (DNNs) demonstrate superior performance in various fields,
including scrutiny. However, recent studies have shown that DNNs are vulnerable
to backdoor attacks. Several defenses were proposed in the past to defend DNNs
against such backdoor attacks. In this work, we conduct a critical analysis and iden-
tify common pitfalls in these existing defenses, prepare a comprehensive database
of backdoor attacks, conduct a side-by-side evaluation of existing defenses against
this database. Finally, we layout some general guidelines to help researchers de-
velop more robust defenses in the future and avoid common mistakes from the past.

1 Introduction

Defense Pitfall 1 Pitfall 2 Pitfall 3

Fine-pruning 3 7 3
Neural Cleanse 3 3 7
ABS 7 3 3
STRIP 7 3 7
Generative Modelling 7 3 7

Table 1: Common pitfalls in existing defenses. Pitfall
1 is sensitivity to hyper-parameters, pitfall 2 is restric-
tive assumptions on backdoor structure and impact, and
pitfall 3 is poor performance on adaptive attacks.

Deep neural network backdooring attacks
based on training data poisoning are an
emerging and critical threat. Several meth-
ods have been proposed recently to de-
tect [9, 1, 6] and/or mitigate [10, 5, 7] back-
doors. But, mirroring the early work on
adversarial defenses, most backdooring de-
fenses have been circumvented soon after
publication. While this is often par for the
course in security research, a critical anal-
ysis of existing defenses reveals common
pitfalls that must be avoided in the search

for a general and robust defense against backdooring attacks. Specifically, we found one or more of
three common pitfalls in each defense we evaluated (see Table 1):

• Pitfall 1: Insufficient (or non-existent) evaluation against a range of attack hyper-
parameters. Empirically, we find that several defenses are highly sensitive choice of attack
hyper-parameters, for instance, the learning rate used to train the BadNet. Several defenses
fail to explore a range of hyper-parameters in their evaluation.

• Pitfall 2: Restrictive assumptions on backdoor structure and impact. Several defenses
we evaluate assume that backdoor triggers are small, have fixed (and even known) size/shape,
are additive in the pixel space, or only modify a region part of the input. Almost all defenses
assume targeted "all-to-one" attacks, that is, backdoored images from any source class are
mis-predicted as a single target class. In practice, however, attackers are far from being
restricted to specific types of backdoors and can have a range of attack objectives.

• Pitfall 3: Adaptive attacks that circumvent explicit defense assumptions not explored.
Finally, several defenses rely on explicit assumptions about how backdoors manifest in a
network, but fail to examine if these assumptions can be easily circumvented.

The pitfalls in existing work call into question the robustness of state-of-art defenses against back-
dooring attacks, and serve as a call-to-arms for more developing more general defenses that make
minimal assumptions about the adversary.
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In this paper, we identify, qualitatively and empirically, shortcomings in all existing state-of-art
backdooring defenses related to one or more of the three pitfalls described above (Section 3), prepare
a comprehensive database of BadNets attacks that encompass a range of attack hyper-parameters,
backdoor types and attack objectives (Section 4), and provide the first side-by-side evaluation of
state-of-art defenses using the BadNet database (Section 5). We conclude by discussing marching
orders for future defenses (Section 6).

2 Threat Model
Consistent with prior work, our threat model assumes an attacker with access to a large clean training
data, Dcltrain. Training benignly on this dataset produces a clean DNN, f�cl , with parameters θcl .
However, the attacker’s goal is to train a BadNet, f�bd , θbd 6= θcl, by poisoning the training data
using function poison:xcl ! xp and/or modifying the ground truth label of xcl. Specifically,
f�bd is obtained by training on poisoned training data, Dbdtrain. The BadNet is trained such that
f�bd(xcl) = f�cl(x

cl), but f�bd(xp) is not necessarily equal to f�cl(x
cl). The attacker uploads θbd

to an online model repositories where the user downloads the model and deploys it in the field
after evaluating it on a small, held-out clean validation dataset, Dclvalid. (Tran et al. [9] assume a
weaker model in which that the defender also has access to poisoned images in their threat model.)
Importantly, the attacker has broad flexibility in choosing the poison(�) function from a range of
physically plausible manipulations, and in determining how a BadNet misbehaves on poisoned inputs.
We argue that a defense is incomplete unless it contends with the broadest possible class of attacks.

3 Identifying Pitfalls in Existing Defenses
Here we discuss the three pitfalls in prior work by giving prominent examples of each:

3.1 Pitfall 1: Insufficient (or non-existent) evaluation against a range of attack
hyper-parameters.
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Figure 1: Shortcomings of fine pruning: Left plot
is average neuron activations for each neuron in the
last pooling layer, for a set of poisoned and benign
inputs. Right plot shows the effect of pruning on
clean accuracy and attack success.

The Fine-pruning [5] defense is based on the ob-
servation that backdoor and clean inputs excite
different neurons in a BadNet. However, this
observation was based on BadNets trained with
single set of hyper-parameters; by exploring a
range of hyper-parameters including learning
rate, batch size, weights initialization, data pre-
processing, choice of optimizer, etc., we are able
to find BadNets for which this assumption is vi-
olated. Consider Fig. 1—while Fine-pruning is
shown to be effective on BadNet (on sunglasses
trigger) proposed in [5], it fails on the same
BadNet trained with different hyper-parameters
because backdoor neurons are also activated by clean inputs.

3.2 Pitfall 2: Restrictive assumptions on backdoor size, shape and impact.
The Neural Cleanse defense makes restrictive assumptions on the backdoor size/shape while STRIP
assumes that any backdoored input is always classified as a single target label. We discuss how these
assumptions are easily subverted.

Figure 2: Shortcomings of Neural
Cleanse applied to large trigger: Left-
most image is actual trigger; other im-
ages are incorrectly reverse-engineered
triggers by Neural Cleanse.

Assumptions on Trigger Shape and Size. Neural
Cleanse [10] and Qiao et al. [7] seeks to recover the trig-
ger (or trigger distribution) given a BadNet; the recovered
trigger (or distribution) is used (with corrected labels) to
re-train the BadNet with the goal of disabling the back-
door [10, 7]. This is called backdoor unlearning. To
do so, however, Neural Cleanse [10] and Qiao et al. [7]
assumes that the trigger is small and contiguous pattern
super-imposed on a source image; e.g., the trigger could
be a small fixed pattern of pixels superimposed in one
corner of the image.

In practice, triggers need not be small or contiguous.
For example, in Fig. 2 we illustrate the output from Neural Cleanse given BadNets triggered by
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BadNet Attack Setting Dataset Trigger Target label

AAA [2] All-All MNIST Patterned trigger y → y+1
CLA [4] Clean-label Fixed noise 0

TCA Trigger comb. CIFAR-10 Yellow triangle + red square 7

PN Simple GTSRB Post-it note 0
FSA [6] Feature Space Gotham filter 35

SG Simple

YouTube Face

sg 0
LS Simple ls 0

MTSTA* Multi-trigger, single target ls, eb, sg 4,4,4
MTMTA* Multi-trigger, multi target ls, eb, sg 1,5,8

* for MTSTA and MTMTA, ls, eb, sg corresponds to lipstick, eyebrow, sunglasses trigger, respectively

Table 2: Details of BadNet attacks used to evaluate SOTA defenses.

a large, but semantically meaningful, sunglasses trigger for a face recognition application. The
recovered triggers bear little resemblance to the original, missing its size, shape, and color.

Assumptions on Backdoor Impact. Except for fine-pruning, all the existing defenses work only
for all-to-one attacks, i.e., they assume that backdoored inputs are mis-classified as a single target
label, and cannot be easily generalized to a broader range of attacker objectives. For example,
STRIP [1] assumes that any backdoored input is misclassified as the same target label and therefore,
presence of a backdoor over-rides any other features of an input. Based on this assumption, STRIP
detects if test inputs are backdoored by passing a super-position of the test inputs with inputs from
the validation set; the argument is that backdoored inputs will nevertheless get classified as the
attacker-chosen target class, while clean inputs will be randomly mis-classified. However, in practice,
a backdoor’s impact can be input dependent; for example, the target mis-classification depends on the
class of the input as is the case for all-all attacks. We show in Section 5, make it hard for STRIP to
distinguish clean and backdoored inputs.

3.3 Pitfall 3: Adaptive attacks that circumvent explicit defense assumptions not explored.
A recent defense, Artificial Brain Stimulation (ABS) [6] assumes that there exists a single backdoor
neuron in a BadNet that, when activated, independently causes all validation inputs to be classified
as the target label and iteratively scans the network for such neurons. Networks in which such a
backdoor neuron exists are marked as BadNets and are rejected. These assumptions do not always
hold; in fact, BadNets can be trained such that multiple neurons must be activated to trigger the
backdoor. For instance, consider a backdoor that is only triggered in the presence of a conjunction of
input features. We demonstrate in Section 5 that such a BadNet easily circumvents ABS.

4 Experimental Setup
We created BadNets encompassing a range of backdoor size/shapes and attack objectives as shown in
Table 2. We also performed a hyper-parameter search to determine the most effective attacks. The
BadNet hyper-parameters and triggers are given in Appendix A.

A detailed description of the attacks is not possible due to space constraints, but we note that the
TCA attack (that we propose) triggers only when both a yellow triangle and red square are inserted in
an image, while the MTSTA and MTMTA attacks trigger when the face image has either lipstick,
sunglasses or colored eyebrow.

5 Experimental Results
We tabulate the results of our evaluation of five SOTA defenses in Table 3. ABS data is not shown
since we could only evaluate it for the TCA attack (ABS is available as an executable that works only
on CIFAR-10 dataset and for a specific network architecture) for which it fails. None of the remaining
defenses work across the board. Even if we generously set an ASR target of below 20% for defense
success, Fine-pruning only succeeds for CLA. Neural Cleanse succeeds for CLA, PN and MTSTA,
but in two of the three cases, only if we give Neural Cleanse oracular knowledge of the target label.
The success of Neural Cleanse on PN is to be expected since a Post-It Note trigger with a single target
label fits squarely with its assumptions. STRIP only succeeds on the SG and LS BadNets, and as
predicted, fails entirely on the AAA attack. Finally, the generative distribution modeling [7] defense
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Table 3: Performance of existing defenses on baseline BadNets.

BadNet (Baseline) Fine-Pruning Neural Cleanse STRIP (FRR=3%) Qiao et al. [7]
BadNet CA ASR CA ASR CA ASR FAR CA ASR

AAA 97.76 95.91 97.6 57.35 Fails 99.22 Fails
CLA 89.02 100 99.13 14.68 97.74y 4.77y 43.45 -

TCA 87.71 99.9 88.26 99.62 88.59y 99.82y 22.22 out of scope

PN 95.46 99.82 94.58 99.69 95.24 12.39 100 out of scope
FSA 95.08 90.06 95.37 45.5 95.8 28.99 99.95 93.65y 5.58y

SG 97.89 99.98 97.18 95.97 95.74y 38.09y 10.34 77.64y 1.88y

LS 97.19 91.51 97.86 90.53 97.14y 28.44y 18.42 out of scope
MTSTA* 95.84 92.22,92.24,100 97.31 45.04,64.71,94.94 93.37y 0,0,8.67y 11.79,63.73,5.84 out of scope
MTMTA* 95.93 91.51,91.39,100 96.91 52.36,82.34,0 94.18y 30.79,0,95.68y 15.90,53.64,15.58 out of scope

* for MTSTA and MTMTA, the ASR corresponds to using lipstick, eyebrow, sunglasses trigger, respectively

† we give oracular knowledge to these defenses

assumes that the trigger has a fixed size, shape and location, and that the size and location are known
to the defender. Thus, attack settings with multiple triggers (MTMTA, MTSTA), non-contiguous
triggers (TCA), and variable location triggers (PN, LS) are out-of-scope (i.e., there was no way for us
to provide appropriate inputs about trigger size and location to the defense implementation). For the
remaining attacks, the defense timed out (AAA) or failed to identify the correct target label.

6 Discussion and Conclusion
In this paper, we review the existing state-of-the-art defense techniques against backdoor attacks in
DNNs. We identified three common pitfalls in prior defenses and show that as a consequence of these
deficiencies none of the existing defenses currently work against a range of attacks. To address these
shortcomings, we argue that future backdoor defenses should clearly address the following concerns:

• Explore a broad range of attack hyper-parameters: empirically, we found that BadNet prop-
erties can vary significantly depending on the hyper-parameters used to train the BadNets.
Defenses that work for one set of hyper-parameters may not work for another. At the same
time defenses have their own hyper-parameters. To characterize the inter-play between
attackers and defender, defenses should seek to optimize both the attacker hyper-parameters
to circumvent the defenses and, of course, vice-versa, using, for instance, the game theoretic
equilibria between the attack and defense hyper-parameters.

• Propose defenses against a well-defined but broad range of threats: as we have shown,
attacker’s have an asymmetric advantage in selecting from a range of backdoors and backdoor
impact. While it might be tempting to design defenses against specific backdoor types,
for instance, small additive triggers that always cause an input to be mis-classified as a
single target label, this often results in defenses that largely exploit properties of the specific
attack and are hard to generalize to different attacks. It is hard to envision that the backdoor
threat will be mitigated using piecemeal solutions for each different type of attack, and
consequently we argue that defenses must seek to address the broadest possible range of
attacks.

• Explore adaptive attacks: while an adaptive attack against a proposed defense is not always
easy to design, authors should make a reasonable attempt to anticipate attacks against
their proposed defenses, especially if the defense explicitly makes strong assumptions (for
instance, that a single neuron encodes a backdoor) and defenses do not easily generalize
beyond that assumption.

To conclude, we believe, based on our results, that there is plenty of important work left to be
done in designing general and robust defenses against backdoor attacks. We hope that the future
defenses will heed some of the warning signs that we highlight in this paper. From a practical
standpoint, we plan to make all attacks developed as part of this paper publicly available (https:
//github.com/akshajkumarv/BadNets/) to aid in the evaluation of future defenses.
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A Appendix

Table 4: Training hyper-parameters of baseline BadNets

AAA CLA TCA PN, FSA SG, MTSTA,
LS, MTMTA

Architecture [1] Custom DeepID [8] [10] NiN [3]
batch size 32 32 128 32 1283
epochs 50 25 200 15 200
learning rate 1e-4 1 0.01* 1e-3 1
optimizer Adam Adadelta SGD Adam Adadelta
preprocessing 1./255 1./255 (�)��

� 1./255 1./255
* scheduler: lr = 0.01 if epoch� 80; 0.005 if 80 < epoch� 140; else 0.001

Table 5: DNN Architecture for Clean-Attack (CLA) BadNet

Layer Type # of Channels Filter Size Stride Activation

Conv 16 5� 5 1 ReLU
MaxPool 16 2� 2 2 -

Conv 4 5� 5 1 ReLU
MaxPool 4 2� 2 2 -

FC 512 - - ReLU
FC 10 - - Softmax
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