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Abstract

Data poisoning and backdoor attacks manipulate training data in order to cause
models to fail during inference. A recent survey of industry practitioners found
that data poisoning is the number one concern among threats ranging from model
stealing to adversarial attacks. However, we find that the impressive performance
evaluations from data poisoning attacks are, in large part, artifacts of inconsistent
experimental design. In order to promote fair comparison in future work, we
develop standardized benchmarks for data poisoning and backdoor attacks.

1 Introduction

Data poisoning is a security threat to machine learning systems in which an attacker controls the
behavior of a system by manipulating its training data. This class of threats is particularly germane
to deep learning systems because they require large amounts of data to train and are therefore often
trained (or pre-trained) on large datasets scraped from the web. For example, the Open Images and the
Amazon Products datasets contain approximately 9 million and 233 million samples, respectively, that
are scraped from a wide range of potentially insecure, and in many cases unknown, sources [13, 19].
At this scale, it is often infeasible to properly vet content. Furthermore, many practitioners create
datasets by harvesting system inputs (e.g., emails received, files uploaded) or scraping user-created
content (e.g., profiles, text messages, advertisements) without any mechanisms to bar malicious actors
from contributing data. The dependence of industrial AI systems on datasets that are not manually
inspected has led to fear that corrupted training data could produce faulty models [9]. In fact, a recent
survey of 28 industry organizations found that these companies are significantly more afraid of data
poisoning than other threats from adversarial machine learning [12].

A spectrum of poisoning attacks exists in the literature. Backdoor data poisoning causes a model
to misclassify test-time samples that contain a trigger – a visual feature in images or a particular
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character sequence in the natural language setting [4, 5, 21, 26]. For example, one might tamper
with training images so that a vision system fails to identify any person wearing a shirt with the
trigger symbol printed on it. In this threat model, the attacker modifies data at both train time (by
placing poisons) and at inference time (by inserting the trigger). Triggerless poisoning attacks, on
the other hand, do not require modification at inference time [2, 8, 18, 23, 28, 1, 6]. A variety
of innovative backdoor and triggerless poisoning attacks – and defenses – have emerged in recent
years, but inconsistent and perfunctory experimentation has rendered performance evaluations and
comparisons misleading.

In this paper, we develop a unified framework for benchmarking and evaluating a wide range of
poison attacks. Our goal is to address the following weakness in the current literature. We observe
that the reported success of poisoning attacks in the literature is often dependent on specific (and
sometimes unrealistic) choices of network architecture and training protocol, making it difficult to
assess the viability of attacks in real-world scenarios.

Our proposed benchmarks measure the effectiveness of attacks in standardized scenarios using
modern network architectures. We benchmark from-scratch training scenarios and also white-box
and black-box transfer learning settings. Also, we constrain poisoned images to be clean in the sense
of small perturbations. Furthermore, our benchmarks are publicly available as a proving ground for
existing and future data poisoning attacks.

The data poisoning literature contains attacks in a variety of settings including image classification,
facial recognition, and text classification [23, 4, 5]. While we acknowledge the merits of studying
poisoning in a range of modalities, our benchmark focuses on image classification since it is by far
the most common setting in the existing literature.

2 A synopsis of triggerless and backdoor data poisoning

Early poisoning attacks targeted support vector machines and simple neural networks [2, 10]. As
poisoning gained popularity, various strategies for triggerless attacks on deep architectures emerged
[18, 23, 28, 8, 1, 6]. The early backdoor attacks contained triggers in the poisoned data, and thus
were not clean-label [4, 7, 17]. However, methods that produce poison examples which don’t visibly
contain a trigger also show positive results [4, 26, 21]. Poisoning attacks have also precipitated
several defense strategies, but sanitization-based defenses may be overwhelmed by some attacks
[11, 15, 3, 20].

We focus on attacks that achieve targeted misclassification. That is, under both the triggerless and
backdoor threat models, the end goal of an attacker is to cause a target sample to be misclassified as
another specified class. Other objectives, such as decreasing overall test accuracy, have been studied,
but less work exists on this topic with respect to neural networks [27, 16]. In both triggerless and
backdoor data poisoning, the clean images, called base images, that are modified by an attacker come
from a single class, the base class. This class is often chosen to be precisely the same class into
which the attacker wants the target image or class to be misclassified.

There are two major differences between triggerless and backdoor threat models in the literature.
First and foremost, backdoor attacks alter their targets during inference by adding a trigger. In the
works we consider, triggers take the form of small patches added to an image [26, 21]. Second, these
works on backdoor attacks cause a victim to misclassify an entire class rather than a particular sample.
Triggerless attacks instead cause the victim to misclassify an individual image called the target image
[23, 28, 1, 6]. This second distinction between the two threat models is not essential; for example,
triggerless attacks could be designed to cause the victim to misclassify a collection of images rather
than a single target. To be consistent with the literature at large, we focus on triggerless attacks that
target individual samples and backdoor attacks that target whole classes of images.

We focus on the clean-label backdoor attack (CLBD) and the hidden trigger backdoor attack (HTBD),
where poisons are crafted with optimization procedures and do not contain noticeable patches [21, 26].
For triggerless attacks, we focus on the feature collision (FC) and convex polytope (CP) methods,
the most highly cited attacks of the last two years that have appeared at prominent ML conferences
[23, 28]. We include the recent triggerless methods Bullseye Polytope (BP) and Witches’ Brew (WiB)
in the section where we present metrics on our benchmark problems [1, 6]. The following section
details the attacks that serve as the subjects of our experiments.

2



3 Why do we need benchmarks?

Backdoor and triggerless attacks have been tested in a wide range of disparate settings. From model
architecture to target/base class pairs, the literature is inconsistent. Experiments are also lacking in
the breadth of trials performed, sometimes using only one model initialization for all experiments, or
testing against one single target image. We find that inconsistencies in experimental settings have
a large impact on performance evaluations, and have resulted in comparisons that are difficult to
interpret. For example, in CP the authors compare their `∞-constrained attack to FC, which is crafted
with an `2 penalty. In other words, these methods have never been compared on a level playing field.

Inconsistencies in previous work The individual works introducing each attack do not serve
as a fair comparison across methods, since the original demonstrations are inconsistent. Table 1
summarizes experimental settings in the original works. If a particular component (column header)
was considered anywhere in the original paper’s experiments, we mark a (X), leaving exes (×) when
something was not present in any experiments. Table 1 shows the presence of data normalization and
augmentation as well as optimizers (SGD or ADAM). It also shows which learning setup the original
works considered: frozen feature extractor (FFE), end-to-end fine tuning (E2E), or from-scratch
training (FST), as well as which threat levels were tested, white, grey or black box (WB, GB, BB).
We also consider whether or not an ensembled attack was used. The ε values reported are out of 255
and represent the smallest bound considered in the papers; note FC uses an `2 penalty so no bound is
enforced despite the attack being called “clean-label” in the original work. We conclude from Table 1
that experimental design in this field is extremely inconsistent.

Table 1: Various experimental designs used in data poisoning research.

Data Opt. Transfer Learning Threat Model
Attack Norm. Aug. SGD FFE E2E FST WB GB BB Ensembles ε

FC × × × X X × X × × × -
CP X × × X X × × X X X 25.5
CLBD × X X × × X × × X × 8
HTBD X × X X × × X × × × 8

4 Unified benchmarks for data poisoning attacks

Our Benchmark We propose new benchmarks for measuring the efficacy of both backdoor
and triggerless data poisoning attacks. We standardize the datasets and problem settings for our
benchmarks below.2 Target and base images are chosen from the testing and training sets, respectively,
according to a seeded/reproducible random assignment. Poison examples crafted from the bases
must remain within the `∞-ball of radius 8/255 centered at the corresponding base images. Seeding
the random assignment allows us to test against a significant number of different random choices
of base/target, while always using the same choices for each method, thus removing a source of
variation from the results. We consider two different training modes:

I Transfer Learning: A feature extractor pre-trained on clean data is frozen and used while
training a linear classification head on a disjoint set of training data that contains poisons.

II Training From Scratch: A network is trained from random initialization on data containing
poison examples in the training set.

To further standardize these tests, we provide pre-trained architectures to test against. The parameters
of one model are given to the attacker. We then evaluate the strength of the attacks in white-box
and black-box scenarios. For white-box tests in the transfer learning benchmarks, we use the same
frozen feature extractor that is given to the attacker for evaluation. While in the black-box setting,
we craft poisons using the known model but we test on the two models the attacker has not seen,
averaging the results. When training from scratch, models are trained from a random initialization
on the poisoned dataset. We report averages over 100 independent trials for each test. Note that the

2Code is available at (suppressed for anonymity).
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number of attacker-victim network pairs is kept small in our benchmark because each of the 100
trials requires re-training (in some cases from scratch), and we want to keep the benchmark within
reach for researchers with modest computing resources.

CIFAR-10 benchmarks Models are pretrained on CIFAR-100, and the fine-tuning data is a subset
of CIFAR-10. We choose this subset to be the first 250 images from each class, allowing for 25
poison examples. This amount of data motivates the use of transfer learning, since training from
scratch on only 2,500 images yields poor generalization. We allow 500 poisons when training from
scratch. We allow the attacker access to a ResNet-18, and we do black-box tests on VGG11 [24], and
MobileNetV2 [22] models. We train one of each model (three total) when training from scratch and
report the average. Backdoor attacks can use any 5× 5 patch.

TinyImageNet benchmarks Additionally, we pre-train VGG16, ResNet-34, MobileNetV2 models
on the first 100 classes of the TinyImageNet dataset [14]. We fine tune these models on the second
half of the dataset, allowing for 250 poison images. As above, the attacker has access to the particular
VGG16 model, and black-box tests are done on the other two models. In the from-scratch setting,
we train a VGG16 model on the entire TinyImageNet dataset with 250 images poisoned.3 Backdoor
attacks can use any 8× 8 patch.

Benchmark hyperparameters We pre-train models on CIFAR-100 with SGD for 400 epochs
starting with a learning rate of 0.1, which decays by a factor of 10 after epochs 200, 300, and 350.
Models pre-trained on the first half of TinyImageNet are trained with SGD for 200 epochs starting
with a learning rate of 0.1, which decays by a factor of 10 after epochs 100 and 150. In both cases,
we apply per-channel data normalization, random crops, and horizontal flips, and we use batches of
128 images. We then fine tune with poisoned data for 40 epochs with a learning rate that starts at 0.01
and drops to 0.001 after the 30th epoch (this applies to the transfer learning settings).

When training from scratch on CIFAR-10, we include the 500 perturbed poisons in the standard
training set. We use SGD and train for 200 epochs with batches of 128 images and an initial learning
rate of 0.1 that decays by a factor of 10 after epochs 100 and 150. Here too, we use data normalization
and augmentation as described above. When training from scratch on TinyImageNet, we allow for
250 poisoned images; all other hyperparameters are identical.

Our evaluations of six different attacks are shown in Table 2. These attacks are not easily ranked,
as the strongest attacks in some settings are not the strongest in others. Witches’ Brew (WiB) is not
evaluated in the transfer learning settings, since it is not considered in the original work [6].) We find
that by using disjoint and standardized datasets for transfer learning, and common training practices
like data normalization and scheduled learning rate decay, we overcome the deficits in previous
work. Our benchmarks can provide useful evaluations of data poisoning methods and meaningful
comparisons between them.

Table 2: Benchmark success rates (%) (best in each column is in bold).

CIFAR-10 TinyImageNet
Transfer From Scratch Transfer From Scratch

Attack WB BB WB BB

FC 22.0 7.0 1.33 49.0 2.0 4.0
CP 33.0 7.0 0.67 14.0 1.0 0.0
BP 85.0 8.5 2.33 100.0 10.5 44.0
WiB - - 26.0 - - 32.0
CLBD 5.0 6.5 1.00 3.0 1.0 0.0
HTBD 10.0 9.5 2.67 3.0 0.5 0.0

3The TinyImageNet from-scratch benchmark is done with 25 independent trials to keep this problem within
reach for researchers with modest resources.
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5 Conclusion

The threat of data poisoning is at the forefront of fears around emerging ML systems [25]. While
many of the methods claiming to do so do not pose a practical threat, some of the recent methods are
cause for practitioner concern. With real threats emerging, there is a need for fair comparison. The
diversity of attacks, and in particular the difficulty in ordering them by efficacy, calls for a diverse set
of benchmarks. With those we present here, practitioners and researchers can gain an understanding
of how existing methods match up. Furthermore, the advancement of these methods is inevitable,
and our benchmarks serve the data poisoning community as a standardized test problem on which
to evaluate current and future attack methodologies. Trepidation on the part of practitioners will be
matched by the potential harm of poisoning attacks as even stronger attacks emerge. We are arming
the community with the high quality metrics this evolving situation calls for.
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