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Abstract

The rapid development of deep learning has benefited from the release of some
high-quality open-sourced datasets (e.g., ImageNet), which allows researchers
to easily verify the effectiveness of their algorithms. Almost all existing open-
sourced datasets require that they can only be adopted for academic or educational
purposes rather than commercial purposes, whereas there is still no good way
to protect them. In this paper, we propose a backdoor embedding based dataset
watermarking method to protect an open-sourced image-classification dataset by
verifying whether it is used for training a third-party model. Specifically, the
proposed method contains two main processes, including dataset watermarking
and dataset verification. We adopt classical poisoning-based backdoor attacks (e.g.,
BadNets) for dataset watermarking, i.e., generating some poisoned samples by
adding a certain trigger (e.g., a local patch) onto some benign samples, labeled with
a pre-defined target class. Based on the proposed backdoor-based watermarking, we
use a hypothesis test guided method for dataset verification based on the posterior
probability generated by the suspicious third-party model of the benign samples
and their correspondingly watermarked samples (i.e., images with trigger) on the
target class. Experiments on some benchmark datasets are conducted, which verify
the effectiveness of the proposed method.

1 Introduction
Recently, deep neural networks (DNNs) have been widely and successfully adopted in many fields
[1, 2, 3, 4, 5, 6] for their extraordinary performance. Datasets, especially high-quality open-sourced
datasets (e.g., ImageNet [7], CIFAR [8]), are the key factors of the prosperity of DNNs. Those
datasets allow researchers to easily verify the effectiveness of their algorithms or models, which in
turn accelerates the development of deep learning. Since the collection of datasets is time-consuming
and even expensive, all datasets deserve to be protected. Some techniques of dataset protection
have been proposed, such as anonymization [9, 10, 11], encryption [12, 13, 14], and watermarking
[15, 16, 17]. Their purposes are precluding unauthorized users to access the dataset. However,
they are not suitable to protect open-sourced datasets. Because, many open-sourced datasets are
open access to everyone, with the only requirement that they can only be adopted for academic or
educational rather than commercial purposes. Thus, the main challenge for protecting open-sourced
datasets is verifying whether it has been adopted for training a third-party model without given any
training details. To the best of our knowledge, there is no prior work to tackle this challenge.

In this paper, we propose a novel method for protecting open-sourced datasets, dubbed backdoor
embedding based dataset watermarking (BEDW). It consists of two main processes, including dataset
watermarking and dataset verification. Specifically, we adopt poisoning-based backdoor attacks
[18, 19] for dataset watermarking, inspired by the fact that those methods can create an attacker-
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specified hidden backdoor while maintaining the prediction accuracy on benign samples when the
model is trained on the watermarked dataset with the standard training process. Moreover, based
on the proposed backdoor-based dataset watermarking, protectors can verify whether the model
was trained on their dataset by examining the existence of the specific backdoor. Specifically, since
the hidden backdoor can be regarded as the relation between the backdoor trigger and the target
label, the protector only needs to verify whether the posterior probability on the target class of
watermarked samples is significantly higher than that of benign samples. To this end, we adopt a
pairwise hypothesis test guided method to verify it.

The main contributions of this work are three-fold. 1) We propose to protect the open-sourced datasets
by verifying whether the dataset has been adopted to train a third-party model. 2) We present a
novel dataset watermarking method for protecting open-sourced datasets, based on the properties of
poisoning-based backdoor attacks and pair-wise hypothesis tests. 3) Extensive experiments verify the
effectiveness of the proposed method.

2 The Proposed Method
In this section, we explore how to protect a dataset, especially an open-sourced dataset, based on the
backdoor watermarking. Specifically, the proposed method contains two main processes, including
dataset watermarking and dataset verification. They will be discussed in detail in this section.

2.1 Dataset Watermarking based on Poisoning-based Backdoor Attack
Intuitively, the proposed watermarking method needs to satisfy three main properties, including the
harmlessness, effectiveness, and stealthiness, as follows:

Definition 1 (Three Necessary Properties for the Dataset Watermarking).
• Harmlessness: The watermarking should not hinder its normal usage, i.e., the performance of

models trained on the watermarked dataset should be on par with those on the benign dataset.
• Effectiveness: The model trained with the watermarked dataset will be ‘marked’ with a certain

imprint, which can be used to verify whether the dataset has been stolen for training.
• Stealthiness: The watermarking should not attract the attention of the dataset stealer.

Adopting poisoning-based backdoor attacks [19, 20, 21], especially invisible backdoor attacks
[18, 22, 23], would be a good option to fulfill all those requirements. Specifically, in the poisoning-
based backdoor attack, a small number of training samples are modified by adding the trigger (e.g.,
the local patch). These modified samples with attacker-specified target label, together with benign
training samples, are formed as the watermarked training dataset. Accordingly, the prediction of
models trained with the watermarked dataset under standard training process will be maliciously
changed if the hidden backdoor is activated by the attacker-defined trigger, while they perform well
on benign samples [24, 25]. As such, the backdoor-based watermarking is harmless and stealth, and
the protector-specified ‘trigger–target label’ relation can be used to verify whether the dataset is
stolen for commercial purposes. In this paper, we adopt the BadNets [19] and the invisible attack with
blended strategy [18] (dubbed Blended Attack) to watermark the dataset. More exploration about
watermarking with other attacks will be discussed in our future work.

The Generation of the Watermarked Dataset. Suppose Dtrain = {(xi, yi)}Ni=1 indicates the
benign (i.e., unprotected) training set where xi ∈ {0, · · · , 255}C×W×H and yi ∈ {1, · · · ,K}.
Let yt ∈ {1, · · · ,K} and t ∈ {0, · · · , 255}C×W×H be the target label and the protector-specified
trigger, respectively. Note that t itself should not semantically correlate to ytarget. Watermarking a
benign image xbenign with BadNets or Blended Attack can be denoted as follows:

xwatermarked = w(xbenign; t) = (1− λ)⊗ xbenign + λ⊗ t, (1)
where λ ∈ [0, 1]C×W×H is a visibility-related hyper-parameter and ⊗ indicates the element-wise
product. The smaller the λ, the more invisible the trigger and the more stealthy the watermarking.

The watermarked dataset Dwatermarked are the union of remaining benign training samples and a
small number of watermarked training images with target label, i.e.,

Dwatermarked = Dbenign ∪ Dmodified, (2)
where Dmodified = {(x′, ytarget)|x′ = w(x; t), (x, y) ∈ Dtrain\Dbenign}, Dbenign ⊂ Dtrain,
γ =

|Dmodified|
|Dtrain| is the watermarking rate. The smaller the γ, the more stealthy the watermark.
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Table 1: The effectiveness of dataset watermarking (with 5% watermarking rate) measured by BA
and WSR on CIFAR. ‘BA’ and ‘WSR’ indicate the benign accuracy (i.e., accuracy on benign testing
set) and watermark success rate (accuracy on 100% watermarked testing set), respectively.

Watermark → No Watermark BadNets Blended Attack (λ ∈ {0, 0.2}C×W×H )
Trigger → No Trigger Black Line White Square Black Line White Square
Model ↓ Train ACC Test ACC BA WSR BA WSR BA WSR BA WSR
ResNet 100 92.21 91.63 99.51 91.86 97.47 91.85 94.01 91.81 84.99
VGG 99.98 92.30 91.67 99.25 91.97 96.78 91.38 92.86 90.87 77.68

2.2 Dataset Verification with Pairwise Hypothesis Test

Given a trained third-party classifier, protectors can verify whether the model was trained with their
(watermarked) dataset through examining the existence of the specific backdoor. Specifically, since
the hidden backdoor can be regarded as the relation between the backdoor trigger and the target label,
the protector only needs to verify whether the posterior probability on the target class of watermarked
testing samples is significantly higher than that of benign testing samples.

Given a classifierC(·;θ), let f(x;θ) indicates the posterior probability of x predicted by the classifier.
Suppose variable X indicates the benign image from a class with a label different from ytarget,
variableX ′ = w(X; t) denotes the watermarked version ofX . Let variable p = f(X;θ)ytarget and
q = f(X ′;θ)ytarget indicate the posterior probability generated by classifier C(·;θ) on the target
label ytarget ofX andX ′, respectively.

We propose a hypothesis test based dataset verification to verify the existence of backdoor for
determining whether the dataset is stolen, as follows:

Given the null hypothesis H0 : p+ α > q (H1 : p+ α ≤ q) where the hyper-parameter α ∈ [0, 1],
we claim that the model is trained on the watermarked dataset (with α-certainty) iff H0 is rejected.

To conduct the dataset verification, suppose that the protector generates a dataset {xi}Mi=1 containing
M i.i.d. observations of X and let {x′i}Mi=1 indicates their correspondingly watermarked version,
i.e., ∀i,x′i = w(xi; t). The protector can examine the null hypothesis H0 through a pairwise
hypothesis test. Since variable q − p and the effect of the backdoor trigger are closely related,
q − p can be approximately regarded as following the Gaussian distribution [26]. Accordingly, we
adopt the pairwise T-test [26] for the dataset verification in this paper. One may also adopt pairwise
Wilcoxon-test [27] when the observations are not i.i.d., which will be discussed in our future work.

3 Experiments
3.1 Main Results

Evaluation Metric. We adopt benign accuracy (BA) and watermark success rate (WSR) to verify
the effectiveness of the dataset watermarking. BA is defined as the model accuracy on the benign
testing set, while the WSR indicates the model accuracy on the 100% watermarked testing set. When
examining the effectiveness of the dataset verification, we verify the existence of hidden backdoor in
models trained on the watermarked dataset multiple times with the method proposed in Section 2.2.
We calculate the ratio of successful detections (RSD) as its effectiveness measurement. The higher
the BA, WSR, and RSD, the better the performance.

BadNets

Blended Attack

white-square black-line

Figure 1: Watermarked images gener-
ated by BadNets and Blended Attack
with different trigger patterns.

Settings. We use VGG-19 [28] and ResNet-18 [29] as the
model structure and conduct experiments on CIFAR-10
[8] and GTSRB [30] dataset. For the dataset watermark-
ing, we examine two types of triggers, including 3 × 3
white square and black line with 3-pixels width. We set
watermarking rate γ = 0.05 and λ ∈ {0, 0.2}C×W×H in
the blended attack. The values of λ entries corresponding
to the pixels located in trigger area are 0.2, while others
are 0. Besides, the target label ytarget is set to ‘1’ on both
CIFAR-10 and GTSRB dataset. For the dataset verifica-
tion, we set α = 0.5 and randomly sample M = 100
samples with the same class different from ytarget and
repeat the experiments 100 times to calculate the RSD.
The pairwise T-test is performed at a significance level of
0.05. Some watermarked images are shown in Figure 1.
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Table 2: The effectiveness of dataset watermarking (with 5% watermarking rate) measured by BA
and WSR (%) on GTSRB. ‘BA’ and ‘WSR’ indicate the benign accuracy (i.e., accuracy on benign
testing set) and watermark success rate (accuracy on 100% watermarked testing set), respectively.

Watermark → No Watermark BadNets Blended Attack (λ ∈ {0, 0.2}C×W×H )
Trigger → No Trigger Black Line White Square Black Line White Square
Model ↓ Train ACC Test ACC BA WSR BA WSR BA WSR BA WSR
ResNet 100 98.35 97.76 94.70 97.82 79.37 97.83 94.14 97.61 86.94
VGG 100 97.06 96.97 98.96 96.83 74.01 96.37 91.96 97.04 84.58

Table 3: The effectiveness of the dataset verification measured by the ratio of successful detections
(RSD) (%) with certainty α = 0.5 towards models trained on different watermarked datasets.

Dataset → CIFAR GTSRB
Watermark → BadNets Blended Attack BadNets Blended Attack

Model ↓, Trigger → Line Square Line Square Line Square Line Square
ResNet 100 100 100 100 100 100 100 100
VGG 100 100 100 100 100 100 100 100
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Figure 2: The ASR w.r.t. different watermarking
rate γ with line-type trigger on CIFAR-10 dataset.
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Figure 3: The ASR w.r.t. different visibility-
related parameter λ on CIFAR-10 dataset.

Results. As shown in Table 1-2, compared with the performance of those trained on benign training
sets, the decreases of benign accuracy of models trained on watermarked training sets are all less than
2%. Besides, the WSR of models under most cases are greater than 90% with only a 5% watermarking
rate. Those results verify the harmlessness, effectiveness, and stealthiness of the proposed dataset
watermarking. Moreover, Table 3 also shows the remarkable performance of the proposed dataset
verification. The proposed verification method can accurately identify the backdoor in DNNs trained
with watermarked datasets, even if the WSR does not reach 100%.

3.2 The Ablation Study

In this section, we discuss the effect of two hyper-parameters (i.e., the watermarking rate γ, and the
visibility-related hyper-parameter λ) toward the WSR in the proposed method. Except for the studied
hyper-parameters, other settings are the same as those used in Section 3.1.

As shown in Figure 2, the WSR increases along with an increase of γ. However, its increase will also
decrease the stealthiness of the dataset watermarking. The γ should be specified based on the needs
of protectors. Besides, Figure 3 shows that the WSR also increases with an increase of the value of
non-zero entries in λ. This phenomenon may be due to the reason that it is easier for DNNs to learn
‘robust features’ [31]. We will further explore it in our future work.

4 Conclusion
In this paper, we studied how to protect open-sourced datasets by ensuring that they are not used
for inappropriate purposes. We provided a novel perspective that this task could be formulated as
verifying whether a given model is trained on the protected dataset. To this end, we proposed a
backdoor embedding based dataset watermarking method, consisting of dataset watermarking and
dataset verification. In dataset watermarking, some watermarked samples were generated and inserted
into the dataset, as did in poisoning-based backdoor attacks. In dataset verification, a hypothesis
test was conducted based on the predictions of benign and poisoned testing samples. The proposed
protection method can not only verify whether an open-sourced dataset has been used for training
a model, but also not influence the normal usage of the dataset. Extensive experiments verified the
effectiveness of the proposed method.
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