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Abstract

When trained with SGD, deep neural networks essentially achieve zero training
error, even in the presence of label noise, while also exhibiting good generalization
on natural test data, something referred to as benign overfitting [2, 8]. However,
these models are vulnerable to adversarial attacks. We identify label noise as one
of the causes for adversarial vulnerability, and provide theoretical and empirical
evidence in support of this. Surprisingly, we find several instances of label noise in
datasets such as MNIST and CIFAR, and that robustly trained models incur training
error on some of these, i.e. they don’t fit the noise. We believe this highlights the
importance of removing label noise from dataset as well as protecting the integrity
of the dataset curation process.By means of simple theoretical setups, we show
how the choice of representation can drastically affect adversarial robustness. We
also provide some experimental evidence how incorporating better inductive biases
can help improve robustness.

1 Introduction

Modern machine learning methods achieve a very high accuracy on wide range of tasks, e.g. in
computer vision, natural language processing etc. However, especially in vision tasks, they have been
shown to be highly vulnerable to small adversarial perturbations that are imperceptible to the human
eye [9, 7, 11] . This vulnerability poses serious security concerns when these models are deployed in
real-world tasks (cf. [28, 31, 15, 21]). A large body of research has been devoted to crafting defences
to protect neural networks from adversarial attacks (e.g. [11, 27, 35, 24, 38]). However, such defences
have usually been broken by future attacks [1, 34]. This arms race between attacks and defenses
suggests that to create a truly robust model would require a deeper understanding of the source of
this vulnerability.

CIFAR10 MNIST

Figure 1: Label noise in CIFAR10 and MNIST. Text above the image indicates the training set label.
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Our goal in this paper is not to propose new defenses, but to highlight the importance of proper dataset
curation for adversarial robustness. This becomes especially relevant with interpolating models like
deep neural networks. Starting with the celebrated work of Zhang et al. [37] it has been observed that
neural networks trained with SGD are capable of memorizing large amounts of label noise. Recent
theoretical work (e.g. [23, 4, 3, 13, 6, 5, 2, 26, 8]) has also sought to explain why fitting training
data perfectly does not lead to a large drop in test accuracy, as the classical notion of overfitting
might suggest. This is commonly referred to as memorization or interpolation. We show through
simple theoretical models, as well as experiments on standard datasets, that there are scenarios where
label noise causes significant adversarial vulnerability, even when high natural (test) accuracy can be
achieved. Surprisingly, we find that label noise is not at all uncommon in datasets such as MNIST
and CIFAR-10 (see Figure 1).

2 Theoretical Setting

We develop a simple theoretical framework to demonstrate how overfitting, even very minimal, label
noise causes significant adversarial vulnerability. For notations please see Appendix B.

The following result provides a sufficient condition under which even a small amount of label
noise causes any classifier that fits the training data perfectly to have significant adversarial error.
Informally, Theorem 1 states that if the data distribution has significant probability mass in a union of
(a relatively small number of, and possibly overlapping) balls, each of which has roughly the same
probability mass (cf. Eq. (1)), then even a small amount of label noise renders this entire region
vulnerable to adversarial attacks to classifiers that fit the training data perfectly.
Theorem 1. Let c be the target classifier, and let D be a distribution over (x, y), such that y = c (x)
in its support. Using the notation PD[A] to denote P(x,y)∼D[x ∈ A] for any measurable subset
A ⊆ Rd, suppose that there exist c1 ≥ c2 > 0, ρ > 0, and a finite set ζ ⊂ Rd satisfying

PD

⋃
s∈ζ

Bpρ (s)

 ≥ c1 and ∀s ∈ ζ, PD
[
Bpρ (s)

]
≥ c2
|ζ|

(1)

where Bpρ (s) represents a `p-ball of radius ρ around s. Further, suppose that each of these balls
contain points from a single class i.e. for all s ∈ ζ, for all x, z ∈ Bpρ (s) : c (x) = c (z).

Let Sm be a dataset of m i.i.d. samples drawn from D, which subsequently has each label flipped
independently with probability η. For any classifier f that perfectly fits the training data Sm
i.e. ∀ x, y ∈ Sm, f (x) = y, ∀δ > 0 and m ≥ |ζ|

ηc2
log
(
|ζ|
δ

)
, with probability at least 1 − δ,

RAdv,2ρ(f ;D) ≥ c1.

The goal is to find a relatively small set ζ that satisfies the condition as this will mean that even
for modest sample sizes, the trained models have significant adversarial error. We remark that it
is easy to construct concrete instantiations of problems that satisfy the conditions of the theorem,
e.g. each class represented by a spherical (truncated) Gaussian with radius ρ, with the classes being
well-separated satisfies Eq. (1). The main idea of the proof is that there is sufficient probability mass
for points which are within distance 2ρ of a training datum that was mislabelled. We note that the
generality of the result, namely that any classifier (including neural networks) that fits the training
data must be vulnerable irrespective of its structure, requires a result like Theorem 1. For instance,
one could construct the classifier h, where h(x) = c(x), if (x, b) 6∈ Sm for b = 0, 1, and h(x) = y
if (x, y) ∈ Sm. Note that the classifier h agrees with the target c on every point of Rd except the
mislabelled training examples, and as a result these examples are the only source of vulnerability.
The complete proof is presented in Appendix B.1.

There are a few things to note about Theorem 1. First, the lower bound on adversarial error applies
to any classifier f that fits the training data Sm perfectly and is agnostic to the type of model f is.
Second, for a given c1, there maybe multiple ζs that satisfy the bounds in (1) and the adversarial risk
holds for all of them. Thus, smaller the value of |ζ| the smaller the size of the training data it needs
to fit and it can be done by simpler classifiers. Third, if the distribution of the data is such that it is
concentrated around some points then for a fixed c1, c2, a smaller value of ρ would be required to
satisfy (1) and thus a weaker adversary (smaller perturbation budget 2ρ) can cause a much larger
adversarial error.
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(a) Toy-MNIST , ε = 64
255

(b) Full-MNIST

(c) ResNet18 (CIFAR10) (d) DenseNet121 (CIFAR10) (e) VGG19 (CIFAR10)

Figure 2: Adversarial Error increases with increasing label noise η. Shaded region indicates 95%
confidence interval. Absence of shaded region indicates that it is invisible due to low variance.

Figure 3: Two dimensional PCA projections of the original correctly labelled (blue and orange),
original mis-labelled (green and red), and adversarial examples (purple and brown) at different stages
of training. The correct label for True 0 (blue), Noisy 0 (green), Adv 0 (purple +) are the same i.e. 0
and similar for the other class.

In practice, classifiers exhibit much greater vulnerability than purely arising from the presence of
memorized noisy data. Experiments in Section 3.1 show how label noise causes vulnerability in a toy
MNIST model, the full MNIST and CIFAR10 for a variety of architectures.

3 Experiments on Overfitting Label Noise

In Section 2, we provided theoretical settings to highlight how fitting label noise hurts adversarial
robustness. In this section, we provide empirical evidence on synthetic data inspired by the theory
and on the standard datasets: MNIST [20] and CIFAR10 [19].

3.1 Overfitting label noise decreases adversarial accuracy

We design a simple binary classification problem, toy-MNIST, and show that when fitting a complex
classifier on a training dataset with label noise, adversarial vulnerability increases with the amount
of label noise, and that this vulnerability is caused by the label noise. The problem is constructed
by selecting two random images from MNIST: one “0” and one “1”. Each training/test example is
generated by selecting one of these images and adding i.i.d. Gaussian noise sampled from N

(
0, σ2

)
.

We create a training dataset of 4000 samples by sampling uniformly from either class. Finally, η
fraction of the training data is chosen randomly and its labels are flipped. We train a neural network
with four fully connected layers followed by a softmax layer and minimize the cross-entropy loss
using an SGD optimizer until the training error becomes zero. Then, we attack this network with a
strong `∞ PGD adversary [24] with ε = 64

255 for 400 steps with a step size of 0.01.
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In Figure 2a, we plot the adversarial error, test error and training error as the amount of label noise
(η) varies, for three different values of sample variance (σ2). For low values of σ2 (σ2 = 0.1), the
training data from each class is all concentrated around the same point; as a result these models are
unable to memorize the label noise and the training error is high. In this case, over-fitting label noise
is impossible and the test error, as well as the adversarial error, is low. However, as σ2 increases
to σ2 = 0.5, the neural network is flexible enough to use the “noise component” to extract features
that allow it to memorize label noise and fit the training data perfectly. This brings the training error
down to zero, while causing the test error to increase, and the adversarial error even more so. This is
in line with Theorem 1.
Remark 1. The case when σ2 = 0.3 is particularly interesting; when the label noise is low and the
training error is high, there is no overfitting and the test error and the adversarial error is zero. When
the network starts memorizing label noise (i.e. train error gets lesser than label noise), test error still
remains very low but adversarial error increases rapidly.

We perform a similar experiment on the full MNIST dataset trained on a 4-layered Convolutional
Neural Network. For varying values of η, for a uniformly randomly chosen η fraction of the training
data we assigned the class label randomly. We compute the natural test accuracy and the adversarial
test accuracy for when the network is attacked with a `∞ bounded PGD adversary for varying
perturbation budget ε, with a step size of 0.01 and for 20 steps and plot the results in Figure 2b. We
repeat the same experiment for CIFAR10 with a DenseNet121 [17], ResNet18 [14], and VGG19 [33]
to test the phenomenon across multiple state of the art architectures and plot the results in Figure 2c
to 2e. The results on both datasets show that the effect of over-fitting label noise on adversarial error
is even more clearly visible here; for the same PGD adversary the adversarial error jumps sharply
with increasing label noise, while the growth of natural test error is much slower. This confirms the
hypothesis that benign overfitting may not be so benign when it comes to adversarial error.

For the toy-MNIST problem, we plot a 2-d projection (using PCA) of the learned representations (ac-
tivations before the last layer) at various stages of training in Figure 3. (We remark that the simplicity
of the data model ensures that even a 1-d PCA projection suffices to perfectly separate the classes
when there is no label noise; however, the representations learned by a neural network in the presence
of noise maybe very different!) We highlight two key observations: (i) The bulk of adversarial
examples (“+”-es) are concentrated around the mis-labelled training data (“◦”-es) of the opposite
class. For example, the purple +-es (Adversarially perturbed: True: 0, Pred:1 ) are very close to the
green ◦-es (Mislabelled: True:0, Pred: 1). This provides empirical validation for the hypothesis that if
there is a mis-labelled data-point in the vicinity that has been fit by the model, an adversarial example
is created by moving towards that data point as predicted by Theorem 1. (ii) The mis-labelled training
data take longer to be fit by the classifier. For example by iteration 20, the network actually learns a
fairly good representation and classification boundary that correctly fits the clean training data (but
not the noisy training data). At this stage, the number of adversarial examples are much lower as
compared to Iteration 160, by which point the network has completely fit the noisy training data.
Thus early stopping helps in avoiding memorizing the label noise, and consequently also reduces ad-
versarial vulnerability. Early stopping has indeed been used as a defence in quite a few recent papers
in context of adversarial robustness [36, 16], as well as learning in the presence of label-noise [22].
Our work provides an explanation regarding why early stopping may reduce adversarial vulnerability
by avoiding fitting noisy training data.

4 Conclusion

Recent research has largely shone a positive light on interpolation (zero training error) by highly
over-parameterized models even in the presence of label noise. While overfitting noisy data may
not harm generalisation, we have shown that this can be severely detrimental to robustness. This
raises a new security threat where label noise can be inserted into datasets to make the models
learnt from them vulnerable to adversarial attacks without hurting their test accuracy. As a result, a)
further research into learning without memorization is ever more important [30, 32], b) Importance
of integrity of dataset curation processes is ever more important to prevent the injection of said noise
especially when they will be used with deep neural networks.
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A Related Work

[25] established that there are concept classes with finite VC dimensions i.e. are properly PAC-
learnable but are only improperly robustly PAC learnable. This implies that to learn the problem with
small adversarial error, a different class of models (or representations) needs to be used whereas for
small natural test risk, the original model class (or representation) can be used. Recent empirical
works have also shown evidence towards this (eg. [29]).

Hanin and Rolnick [12] have shown that though the number of possible linear regions that can be
created by a deep ReLU network is exponential in depth, in practice for networks trained with SGD
this tends to grow only linearly thus creating much simpler decision boundaries than is possible due
to sheer expresssivity of deep networks. Experiments on the data models from our theoretical settings
indeed show that adversarial training indeed produces more “complex” decision boundaries

Jacobsen et al. [18] have discussed that excessive invariance in neural networks might increase
adversarial error. However, their argument is that excessive invariance can allow sufficient changes
in the semantically important features without changing the network’s prediction. They describe
this as Invariance-based adversarial examples as opposed to perturbation based adversarial examples.
We show that excessive (incorrect) invariance might also result in perturbation based adversarial
examples.

Another contemporary work [10] discusses a phenomenon they refer to as Shortcut Learning where
deep learning models perform very well on standard tasks like reducing classification error but fail to
perform in more difficult real world situations. We discuss this in the context of models that have
small test error but large adversarial error and provide and theoretical and empirical to discuss why
one of the reasons for this is sub-optimal representation learning.

B Proofs and Extral Notations for Section 2

In this section, we present the formal proofs to the theorems stated in Section 2 as well as define the
notations that were left undefined.

We formally define the notions of natural (test) error and adversarial error.
Definition 1 (Natural and Adversarial Error). For any distribution D defined over (x, y) ∈ Rd ×
{0, 1} and any binary classifier f : Rd → {0, 1},

• the natural error is
R(f ;D) = P(x,y)∼D [f (x) 6= y] , (2)

• if Bγ (x) is a ball of radius γ ≥ 0 around x under some norm1, the γ-adversarial error is

RAdv,γ(f ;D) = P(x,y)∼D [∃z ∈ Bγ (x) ; f (z) 6= y] , (3)

B.1 Proofs of Section 2

Theorem 1. Let c be the target classifier, and let D be a distribution over (x, y), such that y = c (x)
in its support. Using the notation PD[A] to denote P(x,y)∼D[x ∈ A] for any measurable subset
A ⊆ Rd, suppose that there exist c1 ≥ c2 > 0, ρ > 0, and a finite set ζ ⊂ Rd satisfying

PD

⋃
s∈ζ

Bpρ (s)

 ≥ c1 and ∀s ∈ ζ, PD
[
Bpρ (s)

]
≥ c2
|ζ|

(1)

where Bpρ (s) represents a `p-ball of radius ρ around s. Further, suppose that each of these balls
contain points from a single class i.e. for all s ∈ ζ, for all x, z ∈ Bpρ (s) : c (x) = c (z).

Let Sm be a dataset of m i.i.d. samples drawn from D, which subsequently has each label flipped
independently with probability η. For any classifier f that perfectly fits the training data Sm
i.e. ∀ x, y ∈ Sm, f (x) = y, ∀δ > 0 and m ≥ |ζ|

ηc2
log
(
|ζ|
δ

)
, with probability at least 1 − δ,

RAdv,2ρ(f ;D) ≥ c1.
1Throughout, we will mostly use the (most commonly used) `∞ norm, but the results hold for other norms.
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Proof of Theorem 1. From (1), for any ζ and s ∈ ζ,

P(x,y)∼D [x ∈ Bρ (s)] ≥
c2
|ζ|

As the sampling of the point and the injection of label noise are independent events,

P(x,y)∼D [x ∈ Bρ (s) ∧ x gets mislabelled] ≥ c2η

|ζ|

Thus,

PSm∼Dm [∃ (x, y) ∈ Sm : x ∈ Bρ (s) ∧ x is mislabelled] ≥ 1−
(
1− c2η

|ζ|

)m
≥ 1− exp

(
−c2ηm
|ζ|

)

Substituting m ≥ |ζ|
ηc2

log
(
|ζ|
δ

)
and applying the union bound over all s ∈ ζ, we get

PSm∼Dm [∀s ∈ ζ, ∃ (x, y) ∈ Sm : x ∈ Bρ (s) ∧ x is mislabelled] ≥ 1− δ (4)

As for all s ∈ Rd and ∀x, z,∈ Bpρ (s) , ‖x− z‖p ≤ 2ρ, we have that

RAdv,2ρ(f ;D) = PSm∼Dm

[
P(x,y)∼D [∃z ∈ B2ρ (x) ∧ y 6= f (z)]

]
= PSm∼Dm

[
P(x,y)∼D [∃z ∈ B2ρ (x) ∧ c (z) 6= f (z)]

]
≥ PSm∼Dn

P(x,y)∼D

x ∈ ⋃
s∈ζ

Bpρ (s) ∧ {∃z ∈ B2ρ (x) : c (z) 6= f (z)}


= PSm∼Dm

[
P(x,y)∼D

[
∃s ∈ ζ : x ∈ Bpρ (s) ∧ {∃z ∈ Bρ (s) : c (z) 6= f (z)}

]]
= P(x,y)∼D

x ∈ ⋃
s∈ζ

Bpρ (s)

 w.p. atleast 1− δ

≥ c1 w.p. 1− δ

where c is the true concept for the distribution D. The second equality follows from the assumptions
that each of the balls around s ∈ ζ are pure in their labels. The second last equality follows from (4)
by using the x that is guaranteed to exist in the ball around s and be mis-labelled with probability
atleast 1− δ. The last equality follows from Assumption (4).
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