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Abstract
Certifiably robust classifiers have a constant prediction around a neighborhood
of a point, which makes them resilient to test-time attacks with a guarantee. In
this work, we present a previously unrecognized threat to robust machine learning
models. Specifically, we propose a data poisoning attack to degrade the robustness
guarantees of certifiably robust classifiers. Unlike other data poisoning attacks that
reduce the accuracy of the poisoned models on a set of target points, our attack
can reduce the average certified radius of an entire target class in the dataset while
ensuring high accuracy of the classifiers on clean data. Clean label poisoning points
with imperceptible distortion and high accuracy of the poisoned models make our
attack hard to detect. Moreover, the attack is effective even when the victim trains
the models from scratch and uses Gaussian data augmentation. By poisoning
MNIST and CIFAR10 datasets and training deep neural networks on them, we
show the effectiveness of our attack in degrading the certified robustness guarantees
obtained using randomized smoothing. Our results highlight the importance of
data quality in achieving high certified robustness guarantees.

1 Introduction
Data poisoning ([3, 15, 28, 29, 34]) is a training-time attack where the attacker is assumed to have
access to the data on which the victim will train the model. Since modern machine learning methods
need large amounts of data, data poisoning becomes easy as an attacker can place the poisoned
data online and wait for it to be scraped by victims looking to increase the size for their dataset.
Another easy target for poisoning is data collection by crowd sourcing where malicious users can
corrupt the data they contribute. In most cases an attacker can modify only certain parts of the
training data. In this work, we assume the attacker wants to affect the performance of the victim’s
models on a target class and modifies the points of the class (without affecting the labels) by adding
imperceptible perturbations. Several works have shown the effectiveness of using data poisoning in
([23, 28, 14, 17, 34, 7, 16, 30]) altering the training data to hurt the accuracy of the model trained on
poisoned data compared to the accuracy achievable by the model trained on clean data.

In this work, we propose a new data poisoning attack which can reduce the certified robustness
guarantees of models trained on poisoned data. Measuring the certified robustness of machine
learning models has become important after several heuristic defenses claiming to provide robustness
to adversarial attacks were broken by stronger adversaries ([5, 1, 31, 4]). However, many certification
methods ([25, 12, 13, 32]) do not scale to deep neural networks or large datasets, due to their high
complexity. Recently randomized smoothing (RS) based certification methods ([18, 19, 8]) have
become popular due to their scalability to deep neural networks and high dimensional datasets. Thus,
in this work we use data poisoning to reduce the certified robustness guarantees provided by RS.
Unlike previous poisoning attacks, our attack affects the certified radius of all the points in the target
class and maintains high accuracy of the poisoned models on the clean data. Moreover, the attack
is effective when the victim trains the model scratch and uses Gaussian data augmentation based
training. High accuracy of the poisoned model coupled with poisoning data having clean labels makes
the attack stealthy. We formulate our attack as a constrained bilevel problem and theoretically analyze
its solution for the case when the victim uses linear classifiers. Our theoretical analysis and empirical
results suggest that the decision boundary of the smoothed classifiers (used for RS) learnt on the
poisoned data is significantly different from the one learnt using clean data thus causing a reduction
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in certified radius. We show the effectiveness of our attack on real world problems by poisoning
MNIST and CIFAR10 datasets and training state-of-the-art deep neural networks on these poisoned
datasets and certifying their robustness using RS ([8]). To the best of our knowledge, our attack is the
first clean label poisoning attack which significantly reduces the certified robustness guarantees of
the models trained on the poisoned dataset. This highlights the importance of training-data quality
and curation for obtaining meaningful certified robustness guarantees to test time attacks, a factor not
considered by current certification methods.

2 Background
Randomized Smoothing: RS ([8]) uses a smoothed version of the original classifier f : Rd −→ Y
and certifies the robustness of the new classifier. The label of a point x under the smoothed classifier
g(x) = arg maxc Pη∼N (0,σ2I)(f(x+η) = c), is the class whose decision region {x′ ∈ Rd : f(x′) =

c} has the largest measure under the distribution N (x, σ2I), with σ used for smoothing. Suppose the
base classifier f while classifying N (x, σ2I), returns the class cA with probability pA = P(f(x+
η) = cA), and returns the “runner-up” class cB with probability pB = maxc6=cA P(f(x+ η) = c),
then the prediction of the smoothed classifier g is robust around x within the `2 radius r(g;σ) =
σ
2 (Φ−1(pA)− Φ−1(pB)), where Φ−1 is the inverse CDF of the standard Normal distribution.

Bilevel Optimization: A bilevel optimization problem is of the form minu∈U ξ(u, v
∗) s.t. v∗ =

arg minv∈V(u) ζ(u, v), where the upper-level problem is a minimization problem with v constrained
to be the optimal solution to the lower-level problem (see [2]). Although general bilevel problems are
difficult to solve, under some simplifying assumptions their solution can be obtained using gradient
based methods. Several methods for solving bilevel problems in machine learning have been proposed
previously ([9, 24, 10, 20, 27, 22]). We review these in Appendix B. Our attack is formulated as
a constrained bilevel optimization problem and we use the method based of approximating the
hypergradient by approximately solving a linear system (ApproxGrad Alg. 1) in this work.

3 Stealthy data poisoning attack for reducing certified radius
3.1 Attack Formulation
Here we present our attack on the certified robustness guarantees provided by RS using data poisoning.
Let (Xclean, Y clean) be the clean, unalterable portion of the training set. Let u = {u1, ..., un} denote
the attacker’s poisoning data which is added to the clean data: Xclean

⋃
u. For clean-label attack, we

require that each poison example ui has a limited amount of perturbation ‖ui −Xbase
i ‖ ≤ ε from the

base data Xbase
i and has the same label Y base

i , for i = 1, ..., n. We use `∞-norm here but other norms
can be used too. The goal of the attacker is to find u such that when the defender uses Xclean

⋃
u to

train the classifier f , the corresponding smooth classifier g has a small average certified radius on a
clean dataset (Xval, Y val). Additionally, to make the attack stealthier we require that the accuracy of
f on clean validation data remains unaffected. Our attack is therefore the solution to the following
bilevel optimization problem:

min
u

R̃(g̃θ∗ ;X
val, Y val, σ) + λLval(fθ∗ ;X

val, Y val)

s.t. ‖ui −Xbase
i ‖∞ ≤ ε, i = 1, ..., n, and

θ∗ = arg min
θ

Lpoison(fθ;X
clean

⋃
u, Y clean

⋃
Y base, σ).

(1)

The lower-level solution θ∗ is the best classifier found by the defender on the poisoned data using
Gaussian augmentation-based training (Lpoison = 1

npoison

∑
(xi,yi)∈(Xpoison,Y poison) l(xi + η, yi)),

where η ∼ N (0, σ2I)). Note that using Gaussian data augmentation is favorable to the defender and
we include it to make our attack effective even against such defenders. In the upper-level cost, the
first term is the average certified radius and the second term is the loss of the base classifier f on
the validation set: Lval = 1

nval

∑
(xi,yi)∈(Xval,Y val) l(xi, yi). Since the certified radius of the “hard”

smooth classifier g is non-differentiable, we use the “soft” smooth classifier g̃ as an approximation
([26, 33]). Let zθ : X −→ P(K) be a classifier whose last layer is softmax and σ > 0, then soft
smoothed classifier g̃θ of zθ is defined as g̃θ(x) = arg maxc∈Y Eη∼N (0,σ2I)[z

θ
c (x + η)]. It was

shown in [33] that if the ground truth of an input x is y and g̃θ classifies x correctly, then g̃θ is
provably robust at x, with the certified radius given by r̃(g̃θ;x, y, σ) = σ

2 [Φ−1(Eη[zyθ (x + η)]) −
Φ−1(maxy′ 6=y Eη[zy

′

θ (x+ η)])]. Letting r̃(g̃θ;x, y, σ) = 0 if x is misclassified, the average certified
radius is R̃(g̃θ;X,Y, σ) = 1

|X|
∑

(x,y)∈X r̃(g̃θ;x, y, σ).
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Figure 1: Analytical solutions of the bilevel problem (2) with linear classifiers. The poison distribution
(P−poison) can change the decision boundary (broken line) and reduce the average certified radius of
the clean distribution (P−) in two ways (Cases 1 and 2). Perturbation is exaggerated for illustration.

3.2 Attack generation and evaluation
In this work, we focus on creating a poisoned set to reduce the certified adversarial robustness
guarantees of all the points in a target class. We initialize the poisoning points from the clean
points of the target class (i.e., base data) and optimize the perturbation to be added to each point by
solving the bilevel problem in Eq. (1). We use a small value of ε to ensure the perturbations added
are imperceptible and the poison points have clean labels when inspected visually (See Fig. 2 in
Appendix). We solve the bilevel optimization using the ApproxGrad algorithm described in Alg. 1
in Appendix B. A full attack algorithm is shown Alg. 2 in Appendix C. We evaluate the effect of
poisoning, by training models from scratch with Gaussian data augmentation on the poisoned set and
report the average certified radius and certified accuracy on test points from the target class.

3.3 Analysis of a linear classifier
To gain a deeper insight into the effect of poisoning, we analyze the analytical solution of our
bilevel problem for the case of linear classifiers. Suppose we have a one-dimensional balanced
two-class problem and the attacker’s goal is to poison the distribution of the negative class P− so
that the average certified radius (R̃) of the poisoned model for the test points of the negative class
is reduced. Let the maximum permissible perturbation to the points of the class P− be bounded
by |ui − x−i | < ε, i = 1, ..., n. We do not assume any specific distributions P+ and P− here, but
only that

∑
i x
−
i <

∑
i x

+
i is true. Here x+i and x−i refer to the training points of the positive and

the negative class, respectively. A linear classifier in one-dimension is either f(x) = 1 iff x ≥ t
or f(x) = 1 iff x ≤ t parameterized by the threshold t. For linear classifiers, it is known ([8]) that
for any value of σ used for smoothing, the smoothed classifier g is the same as the unsmoothed
classifier f and the certified radius for a point is the distance to the decision boundary. To make
the problem analytically tractable, we use only the radius term without the accuracy term in the
upper-level cost. Similarly, we use the squared-loss for the linear classifier at the lower level for
tractability, i.e., f(x) = wx+ b and l(x, y;w, b) = (wx+ b− y)2. The bilevel formulation for the
poisoning problem is

min
u

EP− [max(sign(w)(−b/w − x), 0)]

s.t. − ε ≤ ui − x−i ≤ ε, for i = 1, ...,n

w, b = arg min
w,b

1

2n

[ n∑
i=1

(wx+i + b− 1)2 +
n∑
i=1

(wui + b+ 1)2
]
.

(2)

Theorem 1. If the perturbation is large enough, i.e., ε ≥
∑
i x

+
i −

∑
i x
−
i

n then there are two locally
optimal solutions to (2) which are ui = xi − ε (Case 1) and ui = xi + ε (Case 2) for i = 1, ..., n.
Otherwise, there is a unique globally optimal solution which is ui = xi − ε (Case 1) for i = 1, ..., n.

The theorem states that optimal poisoning is achieved by shifting all training points of the negative
class either towards left or right by the maximum amount ε (See Fig. 1 and Appendix D.2). In the
linear case, reduction in the radius due to the change in the decision boundary also incurs the loss of
accuracy in the target class (more so in Case 2 than Case 1). For the nonlinear case, direct analysis is
intractable, but we empirically observe that poisoning on neural networks also moves the decision
boundary closer to the target class as measured by the average distance of the test points of the target
class to the decision boundary of the smoothed classifier. Furthermore, for nonlinear classifiers, it is
feasible to reduce the radius without degrading the accuracy too much (See Tables 1 and 2 in Sec. 4).

4 Experiments
Here we present the results of poisoning on convolutional neural network models trained on the
poisoned dataset (with Gaussian data augmentation) generated by our attack. The results are averaged
over models trained starting from five random initializations. We report average certified radius
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(ACR) using the certified radius obtained from RS ([8]) for correctly classified points and zero for
misclassified and abstained points. The approximate certified accuracy (ACA) is the fraction of points
correctly classified by the smoothed classifier. We use the same value of σ for smoothing during attack,
retraining and evaluation. We also report the empirical robustness of the original (unsmoothed) and the
smoothed classifiers using mean `2-distortion for successful attack using CW attack([6]) on the base
classifier and PGD attack([26]) on the smoothed classifier. We use 200 and 100 randomly sampled
points of the target class from the test sets to report certified and empirical robustness for MNIST
and CIFAR10, respectively. We compare our results to watermarking ([28]) which has been used
previously for clean label attacks (opacity 0.1 followed by clipping to make `∞ distortion equal ε),
and show that solution to the bilevel optimization is significantly better at reducing the certified radius.

Table 1: Comparison of clean accuracy, certified adversarial robustness
and empirical robustness before and after data poisoning attack on digit
8 of MNIST, with ε = 0.1

σ Dataset
Clean test accuracy

of Base classifier (%)
Certified Robustness

(Target class)
Empirical Robustness

(Target class)
All Target ACR ACA(%) Base Smoothed

0.25
Clean 99.29 99.20 0.899 99.30 1.531 3.749

Watermarking 98.25 98.56 0.771 98.00 1.201 3.228
Poisoned 98.35 98.33 0.522 89.30 1.366 1.952

0.5
Clean 99.18 98.97 1.459 99.30 1.684 3.855

Watermarking 97.92 97.64 1.063 96.70 1.417 3.056
Poisoned 97.78 97.45 0.823 92.00 1.422 2.269

0.75
Clean 98.72 98.62 1.581 98.40 1.742 4.008

Watermarking 95.90 94.02 1.136 95.90 1.285 3.155
Poisoned 98.69 97.97 0.768 87.50 1.700 2.169

For the experiments with
MNIST we randomly se-
lected the digit 8 to be tar-
geted by the attacker. To
keep the attack clean label
the maximum permissible
`∞ distortion is bounded
by ε ≤ 0.1 which is sim-
ilar to the value used to
generate imperceptible ad-
versarial examples ([21,
11]). As the accuracy and
ACR of models trained on
clean data was high for large values of σ, we used σ ∈ {0.25, 0.5, 0.75} for our experiments (Table 1).
For all values of σ, we observe a significant reduction in certified radius of the target class on the
model trained on the poisoned dataset with only minor changes in clean test accuracy. For the
CIFAR10 experiments we randomly selected the “ship” class to be the target class. We used ε ≤ 0.03
as the maximum permissible distortion for the poisoned data. We only used σ = 0.2 here, as we
found models trained on clean data had low certified radius for smaller values σ and low accuracy
on the target class for higher values both of which are not preferable from a defender’s perspective.
Table 2 shows that our attack reduces the certified radius without degrading the clean accuracy much.

Table 2: Comparison of clean accuracy, certified adversarial robustness
and empirical robustness before and after data poisoning attack on the
class “Ship” from CIFAR10, with ε = 0.03

σ Dataset
Clean test accuracy

of Base classifier(%)
Certified Robustness

(Target class)
Empirical Robustness

(Target class)
All Target ACR ACA(%) Base Smoothed

0.2
Clean 64.26 79.64 0.405 84.60 0.453 1.645

Watermarking 65.05 81.68 0.371 76.20 0.416 1.476
Poisoned 64.90 77.12 0.333 77.60 0.388 1.202

Like the case for linear
classifiers where data poi-
soning led to change in
the decision boundary to
decrease the average certi-
fied radius, we observe the
similar behavior of poi-
soning in neural networks.
The decrease in the mean distortion of successful attack against the smoothed classifier suggests
the decision boundary of the smoothed classifier is closer to the test points of the target class after
poisoning. The empirical robustness of the base model being relatively unchanged shows that the
decision boundary of the smoothed classifier must be affected to reduce the certified radius. Results
of the attack on other classes and attack examples (Fig. 2) are in Appendix D.

5 Conclusion
Certified robustness has emerged as a way to gauge the susceptibility of machine learning models to
test-time attacks. In this work we showed that these guarantees can be rendered ineffective by our
poisoning attack. Our bilevel optimization based attack adds imperceptible perturbations to the points
of the target class and ensures high accuracy of the poisoned models on clean data, making the attack
difficult to detect. Unlike previous poisoning attacks, our attack can hurt the average certified radius
of an entire class and is even effective against models trained using Gaussian data augmentation. Our
results suggests the importance of data quality in achieving high certified robustness guarantees.
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Appendix

A Proofs

Theorem 1. If the perturbation is large enough, i.e., ε ≥
∑
i x

+
i −

∑
i x
−
i

n then there are two locally
optimal solutions to (2) which are ui = xi − ε (Case 1) and ui = xi + ε (Case 2) for i = 1, ..., n.
Otherwise, the is a unique globally optimal solution which is ui = xi − ε (Case 1) for i = 1, ..., n.

Proof. Let t = − b
w be the threshold of the linear classifier. Also let Φ(t) :=

∫ t
−∞ P−(x) dx and

Ψ(t) :=
∫ t
−∞ xP−(x) dx. There are two cases to consider.

Case 1 (w > 0): The upper-level cost function is

f(t) =

∫ t

−∞
(t− x)P−(x) dx = tΦ(t)−Ψ(t)

Note that the range [−∞, t] is where classification is correct for the test data. (Certified radius is 0
for misclassified points by definition.)

The closed-from solution of the lower-level problem gives us t = − b
w =

∑
i ui+

∑
i x

+
i

2n , and therefore
the perturbation bound |ui − x−i | ≤ ε implies

∑
i x
−
i − nε ≤

∑
i ui ≤

∑
i x
−
i + nε and therefore

− ε
2

+

∑
i x

+
i +

∑
i x
−
i

2n
≤ t ≤ ε

2
+

∑
i x

+
i +

∑
i x
−
i

2n
.

Also, the assumption w > 0 poses another constraint: w ∝
∑
i x

+
i −

∑
i ui > 0 and therefore

t =
∑
i ui+

∑
i x

+
i

2n ≤
∑
i x

+
i

n .

The upper-level problem is therefore

min
t

f(t) = tΦ(t)−Ψ(t) s.t. − ε
2

+

∑
i x

+
i +

∑
i x
−
i

2n
≤ t ≤ ε

2
+

∑
i x

+
i +

∑
i x
−
i

2n
and t ≤

∑
i x

+
i

n
.

Since f is non-decreasing (i.e.,f ′(t) = Φ(t) + tP−(t)− tP−(t) ≥ 0), the minimum is achieved at

the left-most boundary t = − ε
2 +

∑
i x

+
i +

∑
i x
−
i

2n which corresponds to ui = −ε, i = 1, ..., n.
Case 2 (w < 0): The upper-level cost function is now

f(t) =

∫ ∞
t

(−t+ x)P−(x) dx = −t(1− Φ(t)) + (1−Ψ(t)),

which is non-increasing (i.e., f ′(t) = −(1− Φ) + tP− − tP− ≤ 0) and has the constraints:

− ε
2

+

∑
i x

+
i +

∑
i x
−
i

2n
≤ t ≤ ε

2
+

∑
i x

+
i +

∑
i x
−
i

2n
.

and

t =

∑
i ui +

∑
i x

+
i

2n
≥
∑
i x

+
i

n
.

For the solution to be feasible, it is required that
∑
i x

+
i

n ≤ ε
2 +

∑
i x

+
i +

∑
i x
−
i

2n , that is ε
2 ≥∑

i x
+
i −

∑
i x
−
i

2n (remember the assumption
∑
i x
−
i

n ≤
∑
i x

+
i

n ). Therefore if the perturbation is large

enough, i.e., ε ≥
∑
i x

+
i −

∑
i x
−
i

n holds, then the minimum is achieved at the right-most boundary

t = ε
2 +

∑
i x

+
i +

∑
i x
−
i

2n which corresponds to ui = ε, i = 1, ..., n.

B Review of bilevel optimization

A bilevel optimization problem is of the form minu∈U ξ(u, v
∗) s.t. v∗ = arg minv∈V(u) ζ(u, v),

where the upper-level problem is a minimization problem with v constrained to be the optimal
solution to the lower-level problem. General bilevel problems are difficult to solve but if the solution

7



to the lower-level problem can be computed in closed form then we can replace the lower-level
problem with its solution, reducing the bilevel problem into a single level problem. We can then use
the gradient-based approaches to solve the single level problem. The total derivative dξ

du (u, v∗(u))
(hypergradient) using the chain rule is

dξ

du
= ∇uξ +

dv

du
· ∇vξ.

Since ∇vζ = 0 at v = v∗(u) and assuming∇2
vvζ is invertible we can compute dv

du using the implicit
function theorem (this can be done even if the solution to lower-level problem can’t be found in
closed form) which gives

dv

du
= −∇2

uvζ(∇2
vvζ)−1.

Thus the hypergradient is

dξ

du
= ∇uξ −∇2

uvζ(∇2
vvζ)−1∇vξ at (u, v∗(u)).

Since computation of (∇2
vvζ)−1 is difficult, [9, 24] proposed to approximate the solution to q =

(∇2
vvζ)−1∇vξ by solving the linear system of equations ∇2

vv · q ≈ ∇vξ by minimizing ‖∇2
vvζ ·

q −∇vξ‖ using any iterative solver. Other methods for solving the bilevel optimization problems
include using forward/reverse mode differentiation [10, 20, 27] to approximate the inverse and penalty
method [22] to solve the single level problem as a constrained minimization problem.

Algorithm 1 Algorithm for ApproxGrad
Input: ξ, ζ,K, T1, T2, {τk}, {ρk,t1}, {βk,t2}, ε, ubase
Output: (uK)
Initialize u0, v0 randomly
Begin

for k = 0, · · · ,K-1 do

# Approximately solve the lower-level problem
for t = 0, · · · , T1-1 do
vt+1 ← vt − ρk,t1∇vζ

end for

# Approximately solve the linear system∇2
vvζ · qk = ∇vξ

for t = 0, · · · , T2-1 do
qt+1 ← qt − βk,t2∇q(‖∇2

vvζ · qk −∇vξ‖)
end for

# Compute the approximate Hypergradient
pk = ∇uξ −∇2

uvζ · qT2

# Update uk and use projection for the upper-level constraint
uk+1 = P (uk − τkpk, ε, ubase)

end for

C Attack algorithm

Alg. 2 shows the complete algorithm used to generate the poisoning attack.

C.1 ApproxGrad

For an unconstrained bilevel problem of the form minu ξ(u, v
∗) s.t. v∗ = arg minv ζ(u, v) if

ζ(u, v) is strongly convex then we can replace the lower-level problem with its necessary condition
and write the bilevel problem as the following single level problem minu ξ(u, v

∗) s.t. ∇vζ(u, v) = 0.

8



Assuming∇2
vvζ is invertible everywhere we can compute the hypergradient at the point (u, v∗(u))

as dξ
du = ∇uξ −∇2

uvζ(∇2
vvζ)−1∇vξ.

The ApproxGrad algorithm approximates the Hessian-inverse vector product by approximately
solving a system of linear equation using an iterative solver such as gradient descent or conjugate
gradient method. In this work we use Adam optimizer to solve this system. Since our problem
for data poisoning in Eq. 1 involves a constraint in the upper-level we use projection to enforce
the constraint. The full algorithm for solving the unconstrained bilevel optimization problem using
ApproxGrad is present in Alg. 1. For our attack the lower-level problem involves a deep neural
network, which can have multiple local minima and thus optimizing against a single local minima in
the bilevel problem is not ideal. To overcome this problem we reinitialize the lower-level variable v
after few upper-level iterations to prevent the poisoning points from overfitting to a particular local
minima. Empirically, this helps us find poisoning points that remain effective even after the model is
retrained from scratch making them generalize to different initialization of the neural network.

Algorithm 2 Full attack algorithm
Input: (Xclean, Y clean), (Xbase, Y base), (Xval, Y val), ε, σ, λ,M,α, P, Loss,
T1, T2, {τk}, {ρk,t1}, {βk,t2}
Output: (Xpoison, Y poison)
Begin
Xpoison := Xbase

Y poison := Y base

for p = 0, · · · , P -1 do
Sample a mini-batch (xclean, yclean) ∼ (Xclean, Y clean)
Sample a mini-batch of n samples(xval, yval) ∼ (Xval, Y val)
Sample a mini-batch (xpoison, ypoison) ∼ (Xpoison, Y poison)
Pick the corresponding base samples for poison data (xbase, ybase)
For each xvali , sample M i.i.d. Gaussian samples xvali1

, · · · , xvalin
∼ N (xvali , σ2I)

Compute z̃θ(xvali )←−
∑M
j=1 αzθ(x

val
ij

)/M for i = 1, · · · , n
Compute Gθ = {(xvali , yvali ) : yvali = arg maxc∈Y z̃cθ(x

val
i )}

For each (xi, yi) ∈ Gθ, compute ỹi : ỹi ←− arg maxc∈Y\{yi} z̃
c
θ(xi)

For each (xi, yi) ∈ Gθ, compute CR(xi, yi) : σ2 (Φ−1(z̃yiθ (xi))− Φ−1(z̃ỹiθ (xi)))

ζ := Loss((xpoison, ypoison)
⋃

(xclean, yclean), σ)
ξ := Loss(xval, yval) + λ

n

∑
(xi,yi)∈Gθ CR(xi, yi)

(xpoison, ypoison) = ApproxGrad(ξ, ζ, 1, T1, T2, {τk}, {ρk,t1}, {βk,t2})
end for

D Additional experiments

D.1 Targeting other classes

In this section we present the results of our poisoning attack on different target classes. Since MNIST
and CIFAR10 both have 10 classes we create 10 poisoning sets each targeting a particular class. The
results of retraining models from five random initializations on each of the 10 poisoning sets are
summarized in Table 3 and Table 4. The reduction in certified radius while maintaining accuracy
high accuracy on clean data suggests that our attack is general purpose and does not depend on the
choice of the target class.

D.2 Isotropic Gaussians

Here we validate the solution found by solving the bilevel optimization against the analytical solution
of a simple problem. Consider a two-dimensional dataset comprising of points drawn from two
isotropic Gaussian distributions. Let P(x|y = −1)) = N (µ1, σ

2I) and P(x|y = 1) = N (µ2, σ
2I)

and equal prior P(y = 1) = P(y = −1). For a point x, the Bayes optimal classifier predicts y = 1
if P(y = 1|x) >= P(y = −1|x) and predicts y = −1 otherwise. The decision boundary of the
Bayes optimal classifier is given by (x − µ1)T(x − µ1) = (x − µ2)T(x − µ2). This is also the
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Table 3: Comparison of clean accuracy, certified adversarial robustness and empirical robustness
before and after data poisoning attack on MNIST. The results are averaged over poisoning attacks
generated by considering each of the 10 MNIST digits as targets, one at a time (ε = 0.1).

σ Dataset
Clean test accuracy

of Base classifier(%)
Certified Robustness

(Target class)
Empirical Robustness

(Target class)
All Target ACR ACA(%) Base Smoothed

0.5 Clean 99.17±0.01 99.18±0.01 1.555±0.11 99.35±0.01 1.981±0.27 3.681±0.44
Poisoned 98.20±0.01 98.50±0.01 1.072±0.33 94.25±0.07 1.750±0.22 2.709±0.65

Table 4: Comparison of clean accuracy, certified adversarial robustness and empirical robustness
before and after data poisoning attack on CIFAR10. The results are averaged over poisoning attacks
generated by considering each of the 10 classes in CIFAR10 as targets, one at a time (ε = 0.03).

σ Dataset
Clean test accuracy

of Base classifier(%)
Certified Robustness

(Target class)
Empirical Robustness

(Target class)
All Target ACR ACA(%) Base Smoothed

0.2 Clean 64.76±0.01 64.41±0.11 0.298±0.11 67.13±0.15 0.331±0.13 1.524±0.42
Poisoned 64.47±0.01 60.18±0.11 0.253±0.08 60.75±0.13 0.295±0.12 1.397±0.45

decision boundary of the smoothed classifier. Assuming the attacker is poisoning the class with
label -1 and maximum permissible distortion is ε, our analysis showed that maximum reduction
in radius occurs if the entire distribution shifts by ε i.e. the new mean of the class with label -1 is
µ1 − ε and the decision boundary is (x− (µ1 − ε))T(x− (µ1 − ε)) = (x− µ2)T(x− µ2). Since
the test distribution is unchanged, the average certified radius for the test points with labels -1 is
reduced by ε√

2
. Using µ1 = 0.2, µ2 = 0.8, σ1 = σ2 = 0.3, ε = 0.1 and using logistic regression in

the lower-level, analytically, certified radius must decrease from 0.4243 to 0.3546. The solution by
solving the bilevel optimization numerically (Table 5) matches the analytic solution.

E Details of experiments

All codes are written in Python using Tensorflow/Keras, and were run on Intel Xeon(R) W-2123
CPU with 64 GB of RAM and dual NVIDIA TITAN RTX. Implementation and hyperparameters are
described below.

E.1 Data splits

For MNIST, we use 55000 points as the training data and 5000 points for validation data. We have
roughly 500 points belonging to the target class in the validation set which is used in the upper-level
problem of Eq. (1). The test set comprises of 10000 points. We use 200 randomly sampled points of
the target class from the test set to report certified and empirical robustness of the retrained models.

For CIFAR10, we use 45000 points as the training data and 5000 points for validation data. Similar
to MNIST we have roughly 500 points belonging to the target class in the validation set which is used
in the upper-level problem of Eq. (1). The test set comprises of 10000 points. We use 100 randomly

Table 5: Comparison of clean accuracy, certified adversarial robustness and empirical robustness
before and after data poisoning attack on class -1 using isotropic Gaussians, with ε = 0.1

σ Dataset
Clean test accuracy

of Base classifier(%)
Certified Robustness

(Target class)
Empirical Robustness

(Target class)
All Target ACR ACA(%) Base Smoothed

0.25 Clean 91.00 90.40 0.4047 90.00 0.4326 0.4292
Poisoned 90.80 88.00 0.3585 88.00 0.3861 0.3798

0.5 Clean 90.80 90.40 0.4139 90.00 0.4290 0.4308
Poisoned 91.00 88.00 0.3587 87.60 0.3747 0.3751

0.75 Clean 90.80 90.40 0.4123 90.00 0.4303 0.4315
Poisoned 91.00 88.00 0.3544 87.60 0.3728 0.3736
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(a) Poisoning points for digit 8 of MNIST

(b) Poisoning points for the class ship of CIFAR10

Figure 2: Poisoning points generated by our attack. The poisoned data has very little distortion
showing that our attack points will have clean labels when inspected by an expert.

sampled points of the target class from the test set to report certified and empirical robustness of the
retrained models.

The accuracy of the base is measured on the entire test set and also on all the points belonging to the
target class.

E.2 Model Architecture

For the experiments on the MNIST dataset, our network consists of a convolution layer with kernel
size of 5x5, 20 filters and ReLU activation, followed by a max pooling layer of size 2x2. This is
followed by another convolution layer with 5x5 kernel, 50 filters and ReLU activation followed by
similar max pooling and dropout layers. Then we have a fully connected layers with ReLU activation
of size 500. Lastly, we have a softmax layer with 10 classes. The accuracy of the model on clean data
when optimized with the Adam optimizer using a learning rate of 0.001 for 100 epochs with batch
size of 200 is 99.3%, without Gaussian data augmentation.

For the experiments on the CIFAR10 dataset, our network consists of 3 convolution blocks with filter
sizes of 48, 96, and 192. Each convolution block consists of two convolution layers, each with kernel
size of 3x3 and ReLU activation. This is followed by a max pooling layer of size 2x2 and a drop
out layer with drop rate of 0.25. After these 3 blocks we have 2 dense layers with ReLU activation
of size 512 and 256 respectively, each followed by a dropout layer with rate 0.5. Finally we have a
softmax layer with 10 classes. The accuracy of the model on clean data when optimized with the
Adam optimizer using a learning rate of 0.001 for 100 epochs with batch size of 200 is 81%, without
Gaussian data augmentation.

We use the same parameters for training the models with Gaussian data augmentation on clean and
poisoned data.

E.3 Hyperparameters

For experiments with MNIST we used ε = 0.1, λ = 0.5,M = 20, α = 16. The batch size used
for lower-level training was 1000, of which 100 points belonged to the poisoned set (target class).
The batch size for validation set was 100 which only consisted of points from the target class. The
lower-level was trained with Gaussian augmentations of the clean and poisoned data.

For experiments with CIFAR10 we used ε = 0.03, λ = 0.06,M = 20, α = 16. The batch size
used for lower-level training was 200, of which 20 points belonged to the poisoned set (target class).
The batch size for validation set was 20 which only consisted of points from the target class. The
lower-level was trained with Gaussian augmentations of the clean and poisoned data.

In all the experiments used P = 100, T1 = T2 = 10, τ = 0.1, ρ = 0.001, β = 0.01 for ApproxGrad.
For certification we used the CERTIFY procedure of [8], with n0 = 1000, n = 100000, α = 0.001.
For measuring empirical robustness of the smoothed classifier, we used the mean `2 distortion
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required by PGD attack to generate an adversarial example as done in [26]. The attack is optimized
for 100 iterations for different values of `2 distortion between (0.01, 7). We use 20 augmentations
for each test points. We used CW attack [6] optimized for 100 steps with 10 binary search steps to
find the adversarial examples for the base classifier. For both attacks the minimum distortion for
a successful attack is recorded for each test point and is used to report the empirical robustness of
smoothed and base classifiers.

For the watermarking baseline, we randomly selected an image (other) from the classes other than
the target class and overlayed them on top of the target class images (base) with an opacity of γ = 0.1
i.e. (poison_image = γ · other + (1− γ) · base). We then clip the images to have `∞ distortion of
ε to make our bilevel attack comparable in terms of maximum distortion.
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