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Abstract

In a data poisoning attack, an attacker modifies, deletes, and/or inserts some train-
ing examples to corrupt the learnt machine learning model. Bootstrap Aggregating
(bagging) is a well-known ensemble learning method, which trains multiple base
models on random subsamples of a training dataset using a base learning algorithm
and uses majority vote to predict labels of testing examples. We prove the intrinsic
certified robustness of bagging against data poisoning attacks. Specifically, we
show that bagging with an arbitrary base learning algorithm provably predicts the
same label for a testing example when the number of modified, deleted, and/or
inserted training examples is bounded by a threshold. Moreover, we show that
our derived threshold is tight if no assumptions on the base learning algorithm are
made. We evaluate our method on MNIST and CIFAR10. For instance, our method
achieves a certified accuracy of 91.1% on MNIST when arbitrarily modifying,
deleting, and/or inserting 100 training examples.

1 Introduction

Data poisoning attacks aim to carefully poison (i.e., modify, delete, and/or insert) some training
examples such that the corrupted model makes incorrect predictions for testing examples as an
attacker desires. To mitigate data poisoning attacks, several certified defenses [6, 7] were recently
proposed. We say a learning algorithm is certifiably robust against data poisoning attacks if it can
learn a classifier that provably predicts the same label for a testing example when the number of
poisoned training examples is bounded. For instance, Ma et al. [6] showed that a classifier trained
with differential privacy certifies robustness against data poisoning attacks. Rosenfeld et al. [7]
leveraged randomized smoothing [2] to certify robustness against data poisoning attacks. However,
these certified defenses suffer from two major limitations. First, they are only applicable to limited
scenarios, i.e., Ma et al. [6] is limited to learning algorithms that can be differentially private, while
Rosenfeld et al. [7] is limited to data poisoning attacks that only modify existing training examples.
Second, their certified robustness guarantees are loose, meaning that a learning algorithm is certifiably
more robust than their guarantees indicate.

We aim to address these limitations in this work. Our approach is based on a well-known ensemble
learning method called Bootstrap Aggregating (bagging) [1]. Bagging first generates N subsamples
by sampling from the training dataset with replacement uniformly at random, where each subsample
includes k training examples. Then, bagging uses a base learning algorithm to train a base classifier
on each subsample. Given a testing example, bagging uses each base classifier to predict its label
and takes majority vote among the predicted labels as the final predicted label. Our first major
theoretical result is that we prove the ensemble classifier in bagging predicts the same label for a
testing example when the number of poisoned training examples is no larger than a threshold (called
certified poisoning size). Our second major theoretical result is that we prove our derived certified
poisoning size is tight if no assumptions on the base learning algorithm are made. Note that the
certified poisoning sizes may be different for different testing examples. Moreover, we design an

NeurIPS 2020 Workshop on Dataset Curation and Security



efficient algorithm to compute our certified poisoning size. We note that a concurrent work [5]
proposed to certify robustness against data poisoning attacks via partitioning the training dataset
using a hash function. However, their results are only applicable to deterministic learning algorithms.
We empirically evaluate our method on MNIST and CIFAR10. For instance, our method can achieve
a certified accuracy of 91.1% on MNIST when 100 training examples are arbitrarily poisoned, where
k = 100 and N = 1, 000. Under the same attack setting, Ma et al. [6] and Rosenfeld et al. [7]
achieve 0 certified accuracy on a simpler MNIST 1/7 dataset.

All our proofs can be found in our technical report [3].

2 Certified Robustness of Bagging

Assuming we have a training dataset D = {(x1, y1), (x2, y2), · · · , (xn, yn)} with n examples.
Moreover, we are given an arbitrary deterministic or randomized base learning algorithm A. For
convenience, we jointly represent the training and testing processes as A(D,x), which is x’s label
predicted by a classifier that is trained using algorithm A and training dataset D.

Data poisoning attacks: In a data poisoning attack, an attacker can carefully modify, delete, and/or
insert some training examples in D such that A(D,x) 6= A(D′,x) for many testing examples x or
some attacker-chosen x, where D′ is the poisoned training dataset. We denote the set of poisoned
training datasets with at most r poisoned training examples asB(D, r) = {D′|max{|D|, |D′|}−|D∩
D′| ≤ r}. Intuitively, max{|D|, |D′|}−|D∩D′| is the minimum number of modified/deleted/inserted
training examples that can change D to D′.
Bootstrap aggregating (Bagging) [1]: Bagging is a well-known ensemble learning method. We
describe a probabilistic view of bagging, which makes it possible to theoretically analyze its certified
robustness against data poisoning attacks. Specifically, we denote by g(D) a random subsample,
which is a list of k examples that are sampled from D with replacement uniformly at random. We use
the base learning algorithm A to learn a base classifier on g(D). Due to the randomness in sampling
the subsample g(D) and the (randomized) base learning algorithm A, the label A(g(D),x) predicted
by the base classifier learnt on g(D) for x is random. We denote by pj = Pr(A(g(D),x) = j)
the probability that the learnt base classifier predicts label j for x, where j = 1, 2, · · · , c. We call
pj label probability. The ensemble classifier h in bagging essentially predicts the label with the
largest label probability for x, i.e., we have h(D,x) = argmaxj∈{1,2,··· ,c} pj , where h(D,x) is the
predicted label for x when the ensemble classifier h is trained on D.

Certified robustness of bagging: We prove the certified robustness of bagging against data poisoning
attacks. In particular, we show that the ensemble classifier in bagging predicts the same label for a
testing example when the number of poisoned training examples is no larger than some threshold
(called certified poisoning size). Moreover, we prove our derived certified poisoning size is tight.
Formally, we have the following two theorems.

Theorem 1 (Certified Poisoning Size of Bagging). Given a training dataset D, a deterministic or
randomized base learning algorithm A, a testing input x, and the ensemble classifier h in bagging.
Suppose l and s respectively are the labels with the largest and second largest label probabilities
predicted by h for x. Moreover, the probability bounds pl and ps satisfy the following:

pl ≥ pl ≥ ps ≥ ps = max
j 6=l

pj . (1)

Then, we have h(D′,x) = l,∀D′ ∈ B(D, r∗), where r∗ is the solution to the following problem:

r∗ = argmax
r

r, s.t. max
|n′−n|≤r

(
n′

n
)k − 2 · (max(n, n′)− r

n
)k + 1− (pl − ps − δl − δs) < 0, (2)

where n = |D|, n′ = |D′|, δl = pl − (bpl · nkc)/nk, and δs = (dps · nke)/nk − ps.

Theorem 2 (Tightness of the Certified Poisoning Size). Assuming we have pl+ps ≤ 1, pl+(c−1) ·
ps ≥ 1, and δl = δs = 0. Then, for any r > r∗, there exist a base learning algorithm A∗ consistent
with (1) and a poisoned training datasetD′ with r poisoned training examples such that h(D′,x) 6= l
or there exist ties.
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Algorithm 1 CERTIFY

Input: A, D, k, N , De, α.
Output: Predicted label and certified poisoning size for each testing example.
f1, f2, · · · , fN ← TRAINUNDERSAMPLE(A,D, k,N)
for xi in De do

counts[j]←
∑N
o=1 I(fo(xi) = j), j ∈ {1, 2, · · · , c}

li, si ← top two indices in counts (ties are broken uniformly at random).
pli , psi ← SIMUEM(counts, αe )
if pli > psi then
r∗i ← BINARYSEARCH(pli , psi , k, |D|)

else
li, r
∗
i ← ABSTAIN,ABSTAIN

end if
end for
return l1, l2, · · · , le and r∗1 , r

∗
2 , · · · , r∗e

3 Computing the Certified Poisoning Size

Given a base learning algorithm A, a training dataset D, subsampling size k, and e testing examples
in De, we aim to compute the label li predicted by the ensemble classifier and the corresponding
certified poisoning size r∗i for each testing input xi. For a testing input xi, our certified poisoning size
relies on a lower bound pli of the largest label probability and an upper bound psi of the second largest
label probability. We design a Monte-Carlo algorithm to estimate the probability bounds for the e
testing examples simultaneously via training N base classifiers. Algorithm 1 shows our algorithm
CERTIFY to estimate the predicted labels and certified poisoning sizes for e testing examples in De.
The function TRAINUNDERSAMPLE randomly samples N subsamples and trains N base classifiers.
The function SIMUEM estimates the probability bounds pli and psi with confidence level 1 − α

e .
In particular, we have pli = Beta(αc ;Nli , N − Nli + 1) and pj = Beta(1 − α

c ;Nj , N − Nj + 1),
∀j 6= li, where 1 − α is the confidence level and Beta(β;λ, θ) is the βth quantile of the Beta
distribution with shape parameters λ and θ. Based on the Bonferroni correction, the simultaneous
confidence level of estimating the probability bounds for the e testing examples is at least 1− α [4].
Moreover, we estimate psi as psi = min(maxj 6=li pj , 1− pli). The function BINARYSEARCH solves
the optimization problem in (2) via binary search to obtain the certified poisoning size r∗i for xi.
Since the probability bounds are estimated using a Monte-Carlo algorithm, they may be estimated
incorrectly. When they are estimated incorrectly, our algorithm CERTIFY may output an incorrect
certified poisoning size. However, the following theorem shows that the probability that CERTIFY
returns an incorrect certified poisoning size for at least one testing example is at most α.
Theorem 3. The probability that CERTIFY returns an incorrect certified poisoning size for at least
one testing example in De is at most α, i.e., we have: Pr(∩xi∈De

((∀D′ ∈ B(D, r∗i ), h(D′,xi) =
li)|li 6= ABSTAIN)) ≥ 1− α.

4 Experiments

Datasets and classifiers: We use MNIST and CIFAR10. The base learning algorithm is neural
network, and we use the example convolutional neural network architecture and ResNet20 in Keras
for MNIST and CIFAR10, respectively. Both datasets have 10,000 testing examples, which are the
De in our algorithm. When we train a base classifier, we adopt the example data augmentation in
Keras for both datasets.

Evaluation metric: We use certified accuracy as our evaluation metric. Formally, we define the

certified accuracy CAr at r poisoned training examples as follows: CAr =
∑

xi∈De
I(li=yi)·I(r∗i≥r)
|De| ,

where yi is the ground truth label for testing input xi, and li and r∗i respectively are the label
predicted by the classifier and the corresponding certified poisoning size for xi. Intuitively, CAr
of a classifier means that the classifier’s testing accuracy for De is at least CAr no matter how the
attacker manipulates at most r poisoned training examples.
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Figure 1: Impact of k and N on our method for MNIST ((a)-(b)) and CIFAR10 ((c)-(d)). (e)
Comparing our method with existing methods.

Parameter setting: Unless otherwise mentioned, we adopt the following default parameter settings
for our method: α = 0.001, N = 1, 000, k = 30 for MNIST, and k = 500 for CIFAR10.

Impact of k and N : Figure 1 shows the impact of k and N on the certified accuracy of our method.
As the results show, k controls a tradeoff between accuracy under no poisoning and robustness.
Specifically, when k is larger, our method has a higher accuracy when there are no data poisoning
attacks (i.e., r = 0) but the certified accuracy drops more quickly as the number of poisoned training
examples increases. The reason is that a larger k makes it more likely to sample poisoned training
examples when creating the subsamples in bagging. The certified accuracy increases as N increases.
The reason is that a larger N produces tighter estimated probability bounds.

Comparing with Ma et al. [6] and Rosenfeld et al. [7]: Since these methods are not scalable
because they train N classifiers on the entire training dataset, we perform comparisons on the MNIST
1/7 dataset that just consists of the digits 1 and 7. This subset includes 13,007 training examples and
2,163 testing examples. Figure 1(e) shows the comparison results, where k = 50, α = 0.001, and
N = 1, 000. To be consistent with previous work, we did not use data augmentation when training
the base classifiers for all three methods in these experiments. Our method significantly outperforms
existing methods. For example, our method can achieve 96.95% certified accuracy when the number
of poisoned training examples is r = 50, while the certified accuracy is 0 under the same setting for
the two existing methods. Ma et al. outperforms Rosenfeld et al. because differential privacy directly
certifies robustness against modification/deletion/insertion of training examples while randomized
smoothing was designed to certify robustness against modifications of features/labels.

5 Conclusion

In this work, we show the intrinsic certified robustness of bagging against data poisoning attacks.
Specifically, we show that bagging predicts the same label for a testing example when the number
of poisoned training examples is bounded. Moreover, we show that our derived bound is tight if no
assumptions on the base learning algorithm are made. Our results on MNIST and CIFAR10 show
that our method achieves much better certified robustness than existing certified defenses.
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