
Dataset Inference:
Ownership Resolution in Machine Learning

Pratyush Maini
IIT Delhi, University of Toronto

and Vector Institute

Mohammad Yaghini
University of Toronto
and Vector Institute

Nicolas Papernot
University of Toronto
and Vector Institute

Abstract

With increasingly more data and computation involved in their training, machine
learning models constitute valuable intellectual property. This has spurred interest
in model stealing attacks, which are made more practical by advances in learning
with partial, little, or no supervision. Existing defenses focus on inserting unique
watermarks in the model’s decision surface, but this is insufficient: since the
watermarks are not sampled from the training distribution, they are not always
preserved during model stealing. In this paper, we make the key observation that
knowledge contained in the stolen model’s training set is what is common to all
stolen copies. The adversary’s goal, irrespective of the attack employed, is always
to extract this knowledge or its by-products. This gives the original model’s owner
a strong advantage over the adversary: model owners have access to the original
training data. We thus introduce dataset inference, the process of identifying
whether a suspected model copy has private knowledge from the original model’s
dataset, as a defense against model stealing. We develop an approach for dataset
inference that combines statistical testing with the ability to estimate the distance
of multiple data points to the decision boundary. Our experiments on CIFAR10 and
CIFAR100 show that model owners can claim with confidence greater than 99%
that their model (or dataset as a matter of fact) was stolen, despite only exposing
50 of the stolen model’s training points. Dataset inference defends against state-of-
the-art attacks, even when the adversary is adaptive.

1 Introduction

Machine learning models have increasingly many parameters (Brown et al., 2020; Kolesnikov
et al., 2019), requiring larger datasets and significant investment of resources. Yet, models are
often exposed to the public to provide services, such as machine translation (Wu et al., 2016) or
image recognition (Wu et al., 2019). This gives adversaries an incentive to steal models via the
exposed interfaces, using attacks such as model extraction. This threat raises a question of ownership
resolution: how can an owner prove that a suspected model contains their intellectual property? We
want to determine whether a potentially stolen model was derived from an owner’s model or dataset.

In this work, we make the key observation that all stolen models necessarily contain direct or indirect
information from the victim model’s training set. This holds regardless of how the adversary gained
access to the stolen model. We exploit the information asymmetry this creates: a model owner is
advantaged by the fact that they have access to the complete training set which was used to train the
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victim model. This leads us to propose a fundamentally different defense strategy: we identify stolen
models because they possess knowledge contained in the private training set of the victim.

We call this process dataset inference (DI). In particular, we find that stolen models are more likely
to overfit on the victim model’s training set than on a random point drawn from the underlying
distribution. The more an adversary interacted with the victim model to steal it, the easier it will be to
claim ownership by distinguishing the stolen model’s behavior on the victim model’s training set.
We distinguish a model’s behavior on its training data from other subsets of data by measuring the
‘prediction certainty’ of any data point: the margin of a given data point to neighbouring classes.

Among related work discussed in Appendix A, distinguishing a classifier’s behavior on examples
from its train and test sets is closest to membership inference (Shokri et al.). Membership inference
(MI) is an attack predicting whether individual examples were used to train a model or not. By
definition, the MI adversary does not have access to the victim’s private training set. Dataset inference
flips this situation and exploits this information asymmetry: the potential victim of model theft is now
the one testing for membership and naturally has access to the training data. Whereas MI typically
requires a large train-test gap because such a setting allows a greater distinction between individual
points in and out the training set (Yeom et al., 2018; Choo et al., 2020), dataset inference succeeds
even when the defender has slightly better than random chance of guessing membership correctly;
because the victim aggregates the result of DI over multiple points from the training set.

In summary, our contributions are: (1) We introduce dataset inference as a general framework for
ownership resolution in machine learning. Our key observation is that knowledge of the training
set leads to information asymmetry which advantages legitimate model owners when resolving
ownership. (2) We theoretically show (Appendix B) that the success of MI decreases with the size
of the training set (as overfitting decreases), whereas DI is independent of the same. Despite the
failure of MI on a binary classification task, DI still succeeds with high probability. (3) We propose
two different methods to characterize training vs. test behavior: targeted adversarial attacks in the
white-box setting, and a novel ‘Blind Walk’ method for the black-box label-only setting. We then
create a concise embedding of each data point that is fed to a confidence regressor to distinguish
between points inside and outside a model’s training set. Hypothesis testing then returns the final
ownership claim. (4) Unlike prior efforts, our method not only helps defend ML services against
model extraction attacks, but also in extreme scenarios such as complete theft of the victim’s model
or training data. In § 3, we also introduce and evaluate our approach against adaptive attacks. (5) We
evaluate our method on the CIFAR10 and CIFAR100 datasets and obtain greater than 99% confidence
in detecting model or data theft via the threat models studied in this work, by exposing only 50
samples from our private dataset.

2 Dataset Inference

Dataset inference is the process of determining whether a victim’s private knowledge has been directly
or indirectly incorporated in a model trained by an adversary. Our key intuition is that classifiers
generally try to maximize the distance of training examples from the model’s decision boundaries.
This means that any model which has stolen the victim’s private knowledge should also position data
similar to victim’s private training data far from its own decision boundaries. (See Figure 3) When
a victim suspects knowledge was stolen from their model, they may measure how the adversary’s
model responds to their own training data to substantiate their ownership claim.

2.1 Embedding Generation

For a model f and data point x, we aim to extract a feature embedding for x that is local to f . Such
an embedding should characterize the ‘prediction margin’ (or distance from the decision boundaries)
of a data point x w.r.t. f . The victim V extracts these embeddings for data points x ∈ D and labels
them as inside (y = 1) or outside (y = 0) of their private dataset SV .1 We introduce two methods for
generating embeddings based on the level of access the victim may have to the adversary’s model.

White-Box Setting: MinGD White-box embedding generation is used when V and A∗ resolve the
claim for ownership in the presence of a neutral arbitrator, such as a court. Both parties provide

1Recall that for our discussion on linear networks in § B, we used a simple metric to compute the ‘prediction
margin’ of a given data point as (y · f(x)). However, the same does not apply to deep networks.
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access to their models, and then the ‘prediction margin’ is measured for the suspected adversary’s
model on the victim’s train and test data points. For any data point (x, y) we evaluate its minimum
distance δ to the neighbouring target classes t by performing gradient descent optimization of the
following objective (Szegedy et al., 2013): minδ d(x, x + δ) s.t. f(x + δ) = t; x + δ ∈ [0, 1]n.
The distance metric d(x, y) refers to the `p distance between points x and y for p ∈ {1, 2,∞}, and t
is the targeted label. The distance δ to each target class is a feature in the embedding vector.
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Figure 1: Training (dotted) the confidence regres-
sor with embeddings of public and private data,
and victim’s model fV ; Dataset Inference (solid)
using m private samples and adversary model fA∗

Black-Box Setting: Blind Walk V may want
to perform DI on a publicly deployed model
f that only allows label query access. This
makes them incapable of computing gradients re-
quired for MinGD. Moreover, querying f would
be costly for V . Therefore, we introduce a
new membership inference method, called Blind
Walk, which maps the ‘prediction margin’ of
any given data point to its robustness to random
noise. We sample a random initial direction δ.
Starting from an input (x, y), take k steps in the
same direction until f(x+δ) = t; t 6= y. Then,
d(x, x+ kδ) is used as a proxy for the ‘predic-
tion margin’ of the model. Further details are in
Appendix F.

2.2 Ownership Tester

It is important for the victim to resolve owner-
ship claims in as few queries as possible, since
each query involves the victim revealing part of
their private dataset SV . Since claiming own-
ership would likely lead to legal action, it is
paramount that the victim minimizes their false
positive rate. We thus test ownership in two
phases: a regression model first infers whether the potentially stolen model’s predictions on individ-
ual examples contain the victim’s private knowledge, this is then followed by a hypothesis test which
aggregates these results to decide dataset inference. This is another key difference with membership
inference efforts: rather than always predicting that a point is from the ‘train’ or ‘test’ data, we claim
ownership of a model only when we have sufficient confidence. This is done through statistical
hypothesis testing, which takes the false positive rate α as a hyper-parameter, and produces either
conclusive positive results with an error of at most α, or an ‘inconclusive’ result.

Confidence Regressor We extract distance embeddings for private training data using the victim’s
model fV and publicly available data that is not used for training of fV . Using the embeddings and
the ground truth membership labels, we train a regression model gV . The goal of gV is to predict a
(proxy) measure of confidence that a sample contains fV ’s private information. For our hypothesis
testing, we require that gV produce smaller values for samples from V’s private training set. Given the
private and complete access that V has to their data, training an accurate gV would not be challenging.
The dotted arrows in Figure 1 demonstrate training of gV .

Hypothesis Testing This is the step where dataset inference claims are made (solid lines in Figure 1).
Using the confidence scores produced by gV and the membership labels, we create equal-sized sample
vectors c and cV from private training and public data, respectively. We test the null hypothesis
H0 : µ < µV where µ = c̄ and µV = c̄V are mean confidence scores. The test would either reject
H0 and conclusively rule that fA∗ is ‘stolen’, or give an inconclusive result.

3 Results

We validate our approach on CIFAR10 and CIFAR100 datasets and discuss the experimental details
in Appendix D. Our evaluation shows that DI is robust to both the strongest model stealing techniques
discussed in literature, but also an adaptive attack we proposed based on Zero-shot learning. DI is
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Figure 2: p-value against number of revealed samples (m). Significance levels (FPR) α = 0.01 and
0.05 (dotted lines) have been drawn. Against most attacks (see Table 1), either in a White- (MinGD)
or Black-box (Blind Walk) setting, the victim V can dispute the adversary’s ownership of fA∗ by
revealing fewer than 60 private samples, with FPR of at most 1%.

able to claim a model was stolen with at least 99% confidence for most threat models with only 10
samples (Appendix G). Hence, the defense exploits an inherent property of model training. Among
the 6 attacks we considered, we observe that our model consistently flags fine-tuned models as stolen.
This is a strong improvement over prior defenses against model extraction, like watermarking which
often failed to produce watermarks robust to fine-tuning. Here, DI is unaffected because fine-tuning
does not remove knowledge from all private data used to train the stolen model. In contrast, the
label-query attack is the most challenging for DI. This is expected because AQ is merely using
V to label their dataset, which leaks much less private knowledge than a distillation-based model
extraction.

DI requires few private points. In Figure 2, we show the number of private points the victim has
to reveal (from its training set) to achieve a particular p-value when claiming model ownership is
low: 40, and often as few as 20, samples to achieve a false positive rate (FPR) α of at most 5%. For a
more stringent FPR of 1%, DI requires at most 60 (CIFAR10) to 75 samples (CIFAR100) samples.

Query efficiency. For the black-box scenario where the victim wants to assess the ownership of a
model served through an API, DI is a query efficient approach that comes at a low cost for the victim.
For 100 data points, DI can be performed in less than 30,000 queries to the API. More efficient
embedding generation optimizations can significantly improve this further. (See G.2)

White-box access is not essential to DI. Our proposed black-box solution (Blind Walk) performs
surprisingly better than its White-box counterpart. We conjecture that the Blind Walk’s advantage
is explained by a combination of factors: (a) gradient-based approaches are sensitive to numerical
instabilities, (b) the approach is stochastic nature and non-targeted (it searchers for any neighboring
class in a randomly chosen direction rather than focusing on a target class).

DI does not require overfitting or retraining. Unlike past defenses (watermarks) and attacks (MI)
which we discussed previously, DI uniquely applies as a post-hoc solution to any publicly deployed
model, irrespective of whether it ‘overfit’ on its training set. This means that model owners in the
real-world can perform DI immediately, to protect models that they have already deployed.

4 Discussion and Conclusion

While adversarial ML often consists in a cycle of attacks and defenses, we turn this game on its head.
Dataset inference leverages knowledge a defender has of their training set to identify models that
an adversary created by either directly accessing this training set without authorization or indirectly
distilling knowledge from one of the models released by the defender. With dataset inference, model
developers resolve model ownership conflicts without making changes to their existing models.

Interestingly, the ability to claim ownership through dataset inference gracefully degrades as the
adversary spends increasingly more resources to train the stolen model. For instance, if an adversary
extracts a copy and later fine-tunes it with a different dataset to conceal the model, it will make the
model more different and dataset inference will be less likely to succeed. But this is expected and
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desired: this means the adversary faced a higher cost to obfuscate this stolen copy. In itself it is not
an easy task, because of accuracy degradation and catastrophic forgetting.
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Appendix

A Related Work

Model Extraction Model Extraction (Tramèr et al., 2016; Jagielski et al., 2020) is the process where
an adversary tries to steal a copy of a machine learning model, that may have been remotely deployed
(such as over a prediction API). Depending on the level of access provided by the prediction APIs,
model extraction may be performed by only using the labels (Chandrasekaran et al., 2019; Correia-
Silva et al., 2018) or the entire prediction logits of the deployed service (Orekondy et al., 2018).
Model Extraction has seen a cycle of attacks and defenses. With each new attack making specific
modifications to circumvent a recently proposed defense (see Watermarking). Model extraction
can also be a reconnaissance step used to prepare for further attacks, e.g., finding adversarial
examples (Papernot et al., 2017; Shumailov et al., 2020).

Watermarking. Since Uchida et al. (2017) first embedded watermarks into neural networks and
Adi et al. (2018) used watermarking as a signature to claim possession, watermarks have been wildly
adapted as a way to resolve ownership claims. The idea behind watermarking is to manipulate the
model to learn information other than that from the true data distribution, and use this knowledge for
verification afterwards. This strategy not only requires new training procedures and decreases the
model’s accuracy (Jia et al., 2020), it is also vulnerable to adaptive attacks that lessen the impact of
watermarks on the model’s decision surface during extraction (Liu et al., 2018; Chen et al., 2019;
Wang et al., 2019; Shafieinejad et al., 2019).

Membership Inference In membership inference (MI), an attacker attempts to learn whether a
particular sample has been used in the training of a model. To achieve this, Shokri et al. train a
number of shadow classifiers on confidence scores produced by the target model with labels indicating
whether samples came from the training or testing set. MI attacks are shown to work in white- (Leino
& Fredrikson; Sablayrolles et al.) as well as black-box scenarios against a various target models
including ML-as-a-service (Shokri et al.) and generative models (Hayes et al.). Yeom et al. (2018)
explore overfitting as the root cause of MI vulnerability. Choo et al. (2020) show that even if the
target hide confidence scores and provide only the labels, they are still vulnerable.

Out of Distribution Detection Another related line of work is out-of-distribution sample detection.
Performance under attack is one of the standard techniques used to find if a sample is in the distribution
(Liang et al., 2017; Lee et al., 2018). The basic idea is that in-distribution samples are a lot easier to
manipulate, whereas out-of-distribution samples require more work. Our work builds on top of it and
in contrast solves a much more challenging problem: the dataset distribution may be the same, but
can we still identify which of the datasets was used for training?

B Theoretical Motivation

Dataset Inference (DI) aims to leverage the disparity of the response of a ML model to inputs that it
saw during training time, versus those that it did not. We call this response ‘prediction margin’. In
§ B.2, we introduce our theoretical framework. In § B.3, we quantify the difference in the expected
response of a model to any point in the training and test set. Finally, in § B.4 we describe how DI
succeeds with high probability in this setting, while membership inference (MI) fails.

B.1 Threat Model and Definition of Dataset Inference

Consider victim V who trains a model fV on their private data SV ⊆ KV , where KV represents the
private knowledge of V . An adversary A∗ may gain access to a subset of KV and use it to train its
own model fA∗ . V suspects theft, and would like to prove that fA∗ is indeed a copy of fV . Hence, V
employs dataset inference on fA∗ to determine if a subset of their private knowledge K ⊆ KV was
used to train fA∗ . We formally define the victim and their dataset inference experiment below.

Definition 1 (Dataset Inferring Victim V(f, α,m)) Let V : F × [0, 1] × N 7→ {1, ∅} be a victim
with private access to SV ⊆ KV . Given a classifier f , V can reveal at most m samples from SV to
either conclusively prove that some knowledge K ⊂ KV has been used in training f , with a Type-I
error (FPR) < α, or return an inconclusive result ∅.
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Definition 2 (Dataset Inference Experiment ExpDI(V,m, α,SV ,D)) Let F be the set of all clas-
sifiers trained on public distribution D, FV ⊂ F be the set of all classifiers trained on the victim’s
private dataset SV ⊂ D, and m a natural number. The dataset inference experiment follows:

1. Choose b← {0, 1} uniformly at random.
2. fA∗ = f ∼ F if b = 0; else f ∼ FV
3. ExpDI(V,m, α,SV ,D) = 1 if V(fA∗ , α,m) = 1 ∩ b = 1 and 0 otherwise.

B.2 Problem Setting

Setup Consider a data distribution D, such that any input-label pair (X, y) can be described as:

y ∼ {−1,+1}; x1 = y · u ∈ RK , x2∼N (0, σ2I) ∈ RD (1)

where X = (x1,x2) ∈ RK+D is the concatenation of x1 and x2 and u ∈ RK is a fixed vector. The
last D dimensions of the input is Gaussian noise with no correlation with the correct label. However,
the first K dimensions are sufficient to perfectly separate inputs from classes {−1,+1} (Nagarajan
& Kolter, 2019). S ⊂ Dm represents the private training set of a model with m training examples.

Architecture We consider the scenario of classifying the input distribution using a linear classifier,
h, with weights W = (w1,w2), such that for any input X: h(X) = w1 · x1 + w2 · x2. And the
final classification decision is sgn(h(X)). While we only discuss the case of a linear network in
this analysis, the success of DI only increases with the number of parameters in a machine learning
model, as is the case for MI (Yeom et al., 2018), which in effect makes the following analysis a
stronger result to prove. Prior works have also argued how over-parametrized deep learning networks
memorize training points (Zhang et al., 2016; Feldman, 2019). At its core, DI builds on the premise
of input memorization, albeit weak. Results on DNNs are discussed in § 3.

B.3 Prediction Margin

Throughout this work, we use ‘prediction margin’ to imply the confidence of a machine learning
model of its prediction. In other words, we try to capture the robustness of a model’s prediction under
uncertainty, which is equivalent to viewing the local landscape of a machine learning model. For the
purpose of the theoretical analysis, it is convenient to define it as the margin of a data point from the
decision boundary (y · h(X)). As we scale our method to deep networks in the empirical evaluation,
we will describe alternate methods of measuring the ‘prediction margin’.

Theorem 1 (Train-Test Margin) Given a linear classifier h(.) trained on S ⊂ D ⊂ RK+D, the
difference in the expected margin for X in S and D, EX∼S [y · h(X)]− EX∼D [y · h(X)] = Dσ2.

The proof (Appendix C.2) first calculates the weights of the learned classifier h(.) by assuming that it
is trained using gradient descent with a fixed learning rate, and viewing all training points exactly
once. We then analyze the expected margin for data points included in training or not.

B.4 Dataset Inference v/s Membership Inference

We now show how MI fails to distinguish between train and test samples in the same setting. This
happens because an adversary has to make a decision about the presence of a given data point in
the training set by querying a single point. However, DI succeeds with high probability in the same
setting. We note that the statistical differences between the ‘prediction margin’ of training and test
data points in § B.3 are only known when we calculate an expectation over multiple samples.

Failure of Membership Inference Consider a membership inferring adversary M that has no
knowledge of the victim’s training data S , but has domain knowledge such as the publicly available
data distribution D. DefineM(X, h(.)) as the adversary’s decision function to predict whether X
belongs to the S. Assume that the adversary makes the membership decision about (X, b) ∼ R,
whereR represents a distribution that uniformly at random samples from either S(b = 1) orD(b = 0).
Φ denotes the Gaussian CDF.
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Theorem 2 (Failure of MI) Given a linear classifier h(.) trained on S ⊂ D ⊂ RD+K , the prob-
ability that an adversary M correctly predicts the membership of inputs randomly belonging to

the training or test set, PX∼R [M(X, h(.)) = b] = 1− Φ
(
−
√

D
2m

)
, and decreases with |S| = m.

Moreover, limm→∞ PX∼R [M(X, h(.)) = b] = 0.5.

  

                                                       A

C

D

B

(a) If x is in training set
  

                                                        A

C

D

B

(b) If x is not in training set

Figure 3: The effect of includ-
ing (x, ‘A’) in the training set.
If x is in the train set, the clas-
sifier will learn to maximize
the decision boundary’s dis-
tance to Y \ {‘A’}. If x is in
the test set, it has no impact.

The theorem suggests that the success of MI when querying a single
data point is extremely low, and as m increases, the adversary can
do no better than a coin flip. Notice that this means that the success
is directly proportional to overfitting. (Proof in Appendix C.3)

Success of Dataset Inference Take V to be a dataset inferring
victim (Definition 1). Let ψV(D, h(.)) be V’s decision function. In
the next theorem, we show that the success of DI in practice is high
and independent of the training set size. (Proof in Appendix C.4)

Theorem 3 (Success of DI) Choose b ← {0, 1} uniformly at
random. Given an adversary’s linear classifier h(.) trained
on D ⊂ RK+D, if b = 0, and on S ⊂ D otherwise.
The probability V correctly decides if an adversary stole its
knowledge P [ψ(D, h(.)) = b] = 1 − Φ

(
−
√
D
2

)
. Moreover,

limD→∞ P [ψ(D, h(.)) = 1] = 1.

Example Assume a dataset of training size 50K and input
dimensions K = 100, D = 900 (i.e., 100 strongly corre-
lated features which is roughly similar to the MNIST dataset)
We have PX∼S [ψ(D, h(.)) = 1] = 1 − 10−51 ∼ 1.0 while
PX∼R [M(X, h(.)) = b] = 0.526. Therefore, in a problem set-
ting where membership inference succeeds only by slightly above
random chance, dataset inference succeeds nearly every time.

C Theoretical Motivation

In this section, we provide the formal proofs of Theorems 1, 2, 3 as
stated in § B. First, we describe the preliminaries including the binary classification task and the
machine learning model used to train the same in Appendix C.1.

C.1 Preliminaries

We repeat the preliminaries described in § B to discuss the proofs in the following sections.

Setup Consider a data distribution D, such that any input-label pair (X, y) can be described as:

y
u.a.r∼ {−1,+1}; x1 = yu ∈ RK , x2∼N (0, σ2) ∈ RD (2)

where X = (x1,x2) ∈ RK+D and u ∈ RK is some fixed vector. This suggests that the last D
dimensions of the input is Gaussian noise which has no correlation with the correct label. However,
the first K input dimensions are sufficient to perfectly separate data points from classes {−1,+1}.
The setup is adapted from Nagarajan & Kolter (2019) We use S+ and D+ to represent the subset of
the training set S and the distribution D with label y = 1.

Architecture We consider the scenario of classifying the input distribution using a linear classifier,
h, with weights W = (w1,w2), such that for any input:

h(X) = w1 · x1 + w2 · x2 (3)

While we only discuss the case of a linear network in this analysis, the success of dataset inference
(like membership inference) only increases with the number of parameters in a machine learning
model (Yeom et al., 2018), which in effect makes the following analysis a stronger result to prove.
Prior works have also argued how over-parametrized deep learning networks memorize training
points (Zhang et al., 2016; Feldman, 2019).
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C.2 Train-Test Prediction Margin (Theorem 1)

Training Algorithm We assume that the learning algorithm initializes the weights of the classifier
h(.) to zero. Sample a training set S ∼ Dm =

{(
X(i), y(i)

)
| i = 1 . . .m

}
. The learning algorithm

maximizes the loss L(X, y) = yh(X) and visits every training point once, with a gradient update
step of learning rate α = 1.

w1 ← w1 + αy(i)x1
(i)

w2 ← w2 + αy(i)x2
(i)

(4)

From the optimization steps described above, one may note that the learned weights for the classifier
h(.) are given by w1 = mu and w2 =

∑
i y

(i)x2
(i) irrespective of the training batch size.

Inference For any data point (X(j), y(j)), we calculate its ‘prediction margin’ as the distance from
the linear boundary, which is proportional to its label times the classifier’s output y · h(X). For any
point, X = (x1, x2) ∼ D, the ‘prediction margin’ is therefore given by:

y · h(X) = y · (w1 · x1 + w2 · x2) = y · (mu) · (yu) + y ·

(∑
i

y(i)x2
(i)

)
· x2

= c+

(
y ·
∑
i

y(i)x2
(i) · x2

) (5)

Now, we calculate the expected value of the margin for a point randomly sampled from the training
set. Consider any point in the training set X ∼ S+ = (X(j), 1) for some index j. Then, we have:

EX(j)∼S+h(X(j)) = y · c+ Ex2
(i)∼N (0,σ2)

[(
i6=j∑
i

y(i)x2
(i) · x2

(j)

)]
+ Ex2

(j)∼N (0,σ2)

[
y(i)(x2

(j))2
]

= c+ 0 +Dσ2

(6)

Note that in (6), we utilize the fact that the square of a standard normal variable follows the χ2
(1)

distribution; and that the expected value of product of independent random variables is same as the
product of their expectations, followed by the linearity of expectation.

Similarly, now consider a new data point (X, 1) ∼ D+.

EX∼D+h(X) = yc+ Ex2
(i)∼N (0,σ2)

[(∑
i

y(i)x2
(i) · x2

)]
= c

(7)

Once again, in (7) we utilize the fact that the expected value of product of independent random
variables is same as the product of their expectations, followed by the linearity of expectation. At an
aggregate over multiple data points, we can hence show that EX∼S+h(X)− EX∼D+h(X) = Dσ2.
This concludes the proof for Theorem 1.

C.3 Failure of Membership Inference (Theorem 2)

In this section, we take a formal view of the conditions that lead to the failure and success of
membership inference. Before we begin with our formal analysis, we would like to point out that the
statistical difference between the distribution of training and test data points in Theorem 1 is only
observed when we aggregate an expectation over multiple samples. Now, we show that the variance
of this difference is so large, that it is very difficult to make any claims from a single input data point.

Consider an adversary that does not have knowledge of the private data used to train a machine
learning model, however, contains domain knowledge of the task. This may include the range and
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dimension of possible inputs to the model. In our case, the adversary has knowledge of the data
distribution D, but not of the training set S.

For a single data point X = (x1,x2) ∈ D, the adversary aims to reliably predict whether it was used
to train the machine learning model, h(.). The prediction margin for X ∈ D is given by:

y · h(X) = y · (w1 · x1 + w2 · x2) = c+

(
y ·
∑
i

y(i)x
(i)
2 · x2

)
(8)

From the analysis in Theorem 2, the adversary knows that EX∼S [y · h(X)] = c + Dσ2 and
EX∼D [y · h(X)] = c. LetM(X|h(.)) represents the membership decision of the adversary for a
given data point X and classifier h. The strongest adversary will use the following decision rule:

M(X|h(.)) =

{
1, if (y · h(X)− c) ≥ t
0, o.w.

(9)

where t ∈
[
0, Dσ2

]
is some threshold that the adversary can tune in order to achieve maximum true

positive rate and minimum false positives.

Similar to Yeom et al. (2018), we consider the scenario where the input data is randomly (with
equal probability via coin flip b) sampled from either S (if b = 1) or D (if b = 0). Let such a
distribution be specified as (X, b) ∼ R. The adversary M must maximize the single objective
PX∈R [M(X|h(.)) = b]. In summary,

P(X,b)∈R [M(X|h(.)) = b] =
P(X,b)∈S [M(X|h(.)) = 1] + P(X,b)∈D [M(X|h(.)) = 0]

2
(10)

We simplify our analysis by considering the data point X ∈ D+ (has true label, y = 1). However,
the analysis generally applies to any X ∈ D.

Case 1: X ∈ D+ Assume meta-variable z2 =
(∑

i y
(i)x2

(i)
)
. Therefore, z2 ∼ N (0,mσ2I),

while x2 ∼ N (0, σ2I). Recall that x2, z2 ∈ RD. Assuming D to be large, we can conveniently
apply the central limit theorem to approximate the distribution of the internal term. Let the individual
dimensions of z2 be denoted by z2(i). Then, we have that:

PX∈D+ [M(X|h(.)) = 0] = PX∈D+

[(
m∑
i

y(i)x2
(i) · x2

)
< t

]
= PX∈D+ [(z2 · x2) < t]

= PX∈D+

 1

D

 D∑
j

Dz2(j) · x2(j)

 < t


(11)

Let α represents the distribution followed by z2(i) · x2(i). From CLT, we have that the combined
distribution behaves like a normal distribution, with µ = µα = and σ2 = σ2

α

D .

µα = 0

σ2
α = m ·D2 · σ4

(12)

We use the fact that Var[XY ] = Var[X]Var[Y ] + E[X]2Var[Y ] + E[Y ]2Var[X] and Var[c ·X] =
c2 ·Var[X] for computing σ2

α. Therefore, let r ∼ N (0,mDσ4):

PX∈D+ [M(X|h(.)) = 0] = Pr∼N (0,mDσ4) [r < t] (13)

It can be observed that P [r < t] increases with the threshold value t. For t = 0, P [(z2 · x2) < 0] =
0.5. Whereas, for t = Dσ2, the probability decreases with the value of m (this can be intuitively
understood as – since the size of training set increases, overfitting decreases, making MI more
difficult). Even for as low as m = 100 points in the training set, P

[
(z2 · x2) < Dσ2

]
= 0.6. For

any value of t ∈
[
0, σ2

]
, the maximum probability for size of training data m = 100 is 0.6. Further,

as the size of the training set increases, the probability tends to 0.5.
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Case 2: X ∈ S+ Once again, as in the proof for Theorem 1, consider any point in the training
set X ∼ S+ = (X(j), 1) for some index j. We will now calculate the probability of success of the
adversary that follows the decision rule described above:

PX∈S+ [M(X|h(.)) = 1] = PX∈S+

[(∑
i

y(i)x2
(i) · x2

)
> t

]

= PX∈S+

[(
i 6=j∑
i

y(i)x2
(i) · x2

(j)

)
+
(
x2

(j) · x2
(j)
)
> t

] (14)

Now, following the discussion in the first case, we know that the first term can be approximated by a
variable α ∼ N (0, (m− 1)Dσ4). Similarly, using CLT over the sum of multiple random variables
sampled from a χ2

1 distribution, we can approximate the second term in the above equation with
a variable β ∼ N (Dσ2, Dσ4). Finally, using the property for sum of independent gaussians, we
can approximate the entire ‘prediction margin’ to be represented by a sample u ∼ N (Dσ2,mDσ4).
Then, we have that:

PX∈S+ [M(X|h(.)) = 1] = Pu∼N (Dσ2,mDσ4) [u > t] (15)

Hence, we show that the adversary can do no better than a coin flip. This concludes the proof for
Theorem 2. The interested reader may further analyze the assertion that the optimal value of t lies in[
0, Dσ2

]
.

To resolve the optimal threshold t for membership inference, we restructure the arguments as follows.
Recall from (10) that the adversary aims to ensure both true positive rates and true negative rates are
high. We know:

PX∈D+ [M(X|h(.)) = 0] = Pr∼N (0,mDσ4) [r < t]

PX∈S+ [M(X|h(.)) = 1] = Pu∼N (Dσ2,mDσ4) [u > t]

P(X,b)∈R [M(X|h(.)) = b] ≤ P [u− r > 0]

(16)

We know that both u, r are sampled from normal distributions. Therefore, define γ = (u −
r) ∼ N (Dσ2, 2mDσ4). This simplifies our discussion to a single normal distribution with
mean µγ = Dσ2 and variance, σ2

γ = 2mDσ4. We can now calculate the CDF at x = 0 to evaluate
the maximum probability of success of membership inference.

Let Z ∼ N (0, 1)It can hence be shown that

P[γ > 0] = P (σtZ + µt) = P
(
Z > −µt

σt

)
= 1− Φ

(
−µt
σt

)
= 1− Φ

(
−
√

D

2m

) (17)

Clearly, as m→∞, P[γ > 0]→ 0.5. This concludes the proof for Theorem 2.

C.4 Success of Dataset Inference (Theorem 3)

In Theorem 2 we showed that an adversary querying a single data point can say no better than a coin
flip about the presence or absence of a given data point in a model’s training set. In this section, we
show that when we reverse this adversarial game, the victim can utilize the information asymmetry to
predict with high confidence if a potential adversary’s model stole their knowledge in any form.

First, recall that the victim has access to its own private training set of size m. For the purposes of
this proof, we call it SmV . As the victim has complete information of the data distribution, it can
randomly sample another dataset S0 ⊂ D \ SmV .

The victim considers that the potential adversary’s model was stolen if the mean ‘prediction margin’
for the points in SV is greater than S0 by some threshold parameter λ. Let ψV(D, h(.)) be V’s
decision function.
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Recall that, in Theorem 1, we had calculated the expected value of the difference in the prediction
margin for the points in the training set versus those in the test set. In the proof of this theorem, we
calculate the probability of the mean of the difference being greater than some value λ.

Now, let us calculate the probability of this margin for a data point randomly sampled from the
training set. Let tV represent the mean of the ‘prediction margin’ of all points in SV for a classifier
h(.). Similarly, let t0 represent the mean of the ‘prediction margin’ of all points in S0 for the classifier
h(.). We will use u2 to denote the last D dimensions of points in S0. Then,

tV =
1

m

∑
j

[(
i 6=j∑
i

y(i)x2
(i) · x2

(j)

)
+ (x2

(j))2

]

=
1

m

∑
j

(x2
(j))2 +

∑
i

[(
i 6=j∑
i

y(i)x2
(i) · x2

(j)

)]

t0 =
1

m

∑
j

[(
i 6=j∑
i

y(i)x2
(i) · u2

(j)

)]
P [ψV(D, h(.)) = 1] = P [(tV − t2) > λ]

(18)

Recognize the similarity of the above formulation with that discussed in the proof for Theorem 2
in Appendix C.3. Let t = tV − t2. Then the random variable t represents the a sample from the
distribution of means for γ defined in Appendix C.3. We can now directly use the Central Limit
Theorem for this proof. Therefore,

µt = µz = Dσ2

σ2
t =

σ2
z

m
= 2Dσ4

(19)

Hence, t ∼ N (Dσ2, 2Dσ4). It is important to note that this distribution is independent of the
number of training points. Hence, unlike membership inference, the success of DI is not curtailed by
the lack of overfitting.

Similarly, for an honest adversary, the distribution of ‘prediction margin’ for points in SV is the same
as that for the points in S0. It directly follows that:

P [ψV(D, h(.)) = 0] = P
[
t̂ < λ

]
= P [t > λ] (20)

where, t̂ ∼ N (0, 2Dσ4). Once again, like the proof of Theorem 2, by symmetry of two normal
distributions with the same variance, and shifted means, we can find that the optimal value of the
parameter λ that maximized true positives, and minimizes false positives, λ = µt

2 .

Let Z ∼ N (0, 1)It can hence be shown that

P[t̂ > λ] = P
(
σtZ + µt >

µt
2

)
= P

(
Z > − µt

2σt

)
= 1− Φ

(
− µt

2σt

)
= 1− Φ

(
−
√
D

2

) (21)

Clearly, as D →∞, P[t̂ > λ]→ 1.0. This concludes the proof for Theorem 3.

D Experimental Setup and Implementation of Dataset Inference

D.1 Datasets and Model Architectures

Unlike prior work on membership inference, which evaluates over victim models trained to overfit on
small subsets of the original dataset, we train all of our victim models on large common benchmarks.

Datasets. We perform our experiments on the CIFAR10 and CIFAR100 datasets (Krizhevsky, 2012).
Both datasets are popular image classification tasks, containing 60,000 coloured images with 10,000
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reserved for testing. CIFAR10 contains 10 target classes with 5000 training images per class, while
CIFAR100 contains 100 target classes with 500 training images per class. Hereafter, these datasets
are the ‘private data’ SV for the purposes of our evaluation.

Model Architecture. The architecture used for the victim model for both CIFAR10 and CIFAR-
100 is a WideResNet (Zagoruyko & Komodakis, 2016) model with depth 28 and widening factor
of 10 (WRN-28-10). We use a dropout (Srivastava et al., 2014) value of 0.3 in line with best
practices (Zagoruyko & Komodakis, 2016). For the threat models described in § D.2, we use smaller
architectures such as WRN-16-1 in case of CIFAR10 and WRN-16-10 in case of CIFAR100. For the
fine-tuning model, we utilize the original victim architecture.

D.2 Model Stealing Attacks

We consider the strongest model stealing attacks in the literature, and introduce new attacks targeting
dataset inference to perform an adaptive evaluation of our defense. The adversary A∗ can gain
different levels of access to V’s private knowledge:

(1) AQ has query access to fV . We consider model extraction (Tramèr et al., 2016) based adversaries
which may (1.a) have access to the model’s prediction vectors (via an API). AQ queries fV on a
non-task specific dataset, and minimizes the KL divergence with its predictions. (1.b) Alternately, to
further distance its predictions from the victim, the adversary may only use the most confident label
from these queries (as pseudo-labels) to train.

(2) AM has access to the victim’s model fV . This may happen when V wishes to open-source their
work for academic purposes but does not allow its commercialization, or via insider-access. (2.a)AM
may fine-tune over fV , or (2.b) use fV for data-free distillation (Fang et al., 2019).2

(3) AD has access to the complete private dataset, SV of the victim. They may train their own model
either (3.a) by distilling fV (over query access), or (3.b) training from scratch using different learning
schemes or architectures. (For further details on the attacks, see Appendix E).

Finally, we also perform DI against an independent and honest machine learning model I that was
trained on its own private dataset. This model is used as a control, to ensure that we do not claim
ownership of models that were not trained by stealing knowledge from our victim model.

D.3 Implementation Details for Dataset Inference

Embedding generation For the white-box method (MinGD), we perform the attack against each
target class while optimizing the `1, `2, `∞ norms. Hence, we obtain an embedding of size 30
(classes×distance measures). In the case of CIFAR100, we only attack the 10 most confident target
classes, as indicated by the prediction vector f(x). For the black-box method (Blind Walk), we
sample 10 times from uniform, Gaussian, and Laplacian distributions to perturb the input. Once
again, we thus obtain an embedding vector of size 30. More details are deferred to Appendix F.

Training the confidence regressor We train a two-layer linear network (with tanh activation) gV
for the task of providing confidence about a given data point’s membership in ‘private’ and ‘public’
data. The regressor’s loss function is L(x, y) = −y · gV(x) where the label y = 1 for a point in the
(public) training set of the respective model, and −1 if it came from victim’s private set.

Hypothesis Tests We query models with equal number of samples from public and private datasets,
create embeddings and calculate confidence score vectors c and cV , respectively. We form a two
sample T-test on the distribution of c and cV and calculate the p-value for the one-sided hypothesis
H0 : µ < µV against Halt : µ > µV . From L, it follows that gV learns to minimize gV(x) when
x ∈ SV , and maximizes it otherwise. Therefore, a vector that contains samples from SV produces
lower confidence scores, and decreases the test’s p-value. If p-value is below a predefined significance
level α, H0 is rejected, and the model under test is marked as ‘stolen’.

In the following results, we repeat all experimental statistical tests for 100 times with randomly sam-
pled data with replacement. To control for multiple testing, and account for the unknown dependence

2This is the first work to consider data-free distillation as a threat model.
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of the p-values thus generated, we aggregate these values using the harmonic mean (Wilson, 2018).
To produce bootstrap 99-percentile confidence intervals, we repeat the experiment 40 times.

E Model Stealing Techniques

In this section, we provide more details about the various threat models that we consider in this work.
We also provide specific use-cases and motivation for the respective threat models, and introduce a
new adaptive adversary targeted specifically against DI.

V : Victim The victim V wishes to release its machine learning model to the community, either
as a service, or by open-sourcing it for non-commercial academic use. V wants to ensure that the
deployed model is not being misused under the terms of license provided.

AD: Data Access The adversaryAD is able to gain complete access to the victim’s private training
data, and aims to deploy its own MLaaS by training the same. We note that labeled private training
data is one of the most expensive commodities in the deployment cycle of modern machine learning
systems.

1. Model Distillation: Traditionally, model distillation (Hinton et al., 2015) was used as
a method to compress larger models by training smaller students using the logits of a
teacher model. We use this as a threat model that the adversary may employ to distance
its predictions from a model that was trained using hard labels from the dataset itself. The
adversary requires both query access, and access to the victim’s private training data for this
attack.

2. Modified Architecture: Multiple works have attempted at identifying unique properties
(or ’fingerprints’) of a model by analyzing specific activations and representative features of
internal model layers (Olah et al., 2017, 2018; Yin et al., 2019). We study the threat model
where the adversary attempts training an alternate architecture on the victim’s private dataset
Dpriv to valid the robustness of our method to changes in model structure.

AM : Model Access The use-case of such an adversary is two fold: (1) the victim open-sources
their own machine learning model under a license that does not allow other individuals to monetize
the same; and (2) the adversary gains insider access to the trained model of a victim. In both the
cases, the adversary aims to monetize its own MLaaS and deploys their own model on the web, by
modifying the original victim model to reduce the dependence on K.

1. Fine-tuning: The adversary has full access to the victim’s machine learning model, but not
to its training data. While fine-tuning is employed used to transfer the knowledge of large
pre-trained models on a given task (Devlin et al., 2018), we use it as a stealing attack, where
the adversary uses the predictions of the victim model on unlabeled public data in order to
modify its decision boundaries. We consider the setting where the adversary can fine-tune
all layers.

2. Zero-Shot Learning: This is the strongest adversary that we introduce specifically targeted
to evade dataset inference. To the best of our knowledge, we are the first to consider such a
threat model. The adversary uses no ‘direct’ knowledge of the actual training data to avoid
any features that it may learn as a result of the training on the victim’s private data set. The
adversary has complete access to the victim model, and uses data-free knowledge transfer
(Micaelli & Storkey, 2019; Fang et al., 2019) to train a student model.

AQ: Query Access Model extraction (Tramèr et al., 2016) is the most popular form of model
stealing attacks against deployed machine leaning models on the web. We discuss the related work
on model extraction attacks in more detail in § A. Depending on the access provided by the machine
learning service, an adversary may aim to extract the model using the logits or the labels alone.

1. Model Extraction Using Labels: The victim model is used to provide pseudo-labels for a
public dataset. The adversary trains their model on this pseudo-dataset. The key difference
is that the input data points may be semantically irrelevant with respect to the task labels
that the adversary’s model is being trained on.
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2. Model Extraction Using Logits: The performance of model extraction attacks can be
improved when the victim provides confidence values for different output classes, rather than
the correct labels itself. The adversary’s model is trained to minimize the KL divergence
with the outputs of the victim on a public (or non-task specific) dataset.

I : Independent Model Finally, we also study the results of dataset inference on an independent
and honest machine learning model that is trained on its own private dataset. This is used as a control
to verify that the dataset inference procedure does not always predict that the potential adversary
stole the victim’s knowledge.3

Training the Threat Models. For model extraction and fine-tuning attacks, we use a subset of
500,000 unlabeled TinyImages that are closest to CIFAR10, as created by Carmon et al. (2019). More
details about the creation of the dataset can be found in their work. In case of CIFAR100, we use the
STL-10 (Coates et al., 2011) dataset to steal the models. We train the student model for 20 epochs
in case of model extraction methods and 5 epochs for fine-tuning. For Zero-shot extraction, we use
the data-free adversarial distillation method proposed by Fang et al. (2019) and train the student
model for 200 epochs. In case of distillation and modified architecture, we have access to the original
training data of the victim. We train both models for 100 epochs.

In all the training methods, we use a fixed learning rate strategy. We use the SGD optimizer and
decay the learning rate by a factor of 0.2 at the end of the 0.3 ∗ n, 0.6 ∗ n and 0.8 ∗ n epochs, where
n is the total number of epochs that the model is trained for.

F Embedding Generation

Embedding Generation Hyperparameters For the case of MinGD attack, we perform adversarial
attacks defined by the optimization equation

min
δ
d(x, x+ δ) s.t. f(x+ δ) = t; x+ δ ∈ [0, 1]n (22)

The distance metric d(x, y) refers to the `p distance between points x and y for p ∈ {1, 2,∞}, and t
is the targeted label. To perform the optimization, we perform gradient descent with steps of size
αp. We take a maximum of 500 steps of gradient optimization, but pre-terminate at the earliest
misclassification. The step sizes for the individual perturbation types are given by {α∞, α2, α1} =
{0.001, 0.01, 0.1}.
For the case of Blind Walk, We sample a random initial direction δ. Starting from an input (x, y),
take k steps in the same direction until f(x+ δ) = t; t 6= y. Then, d(x, x+ kδ) is used as a proxy
for the ‘prediction margin’ of the model. We repeat the search over multiple random initial directions
to increase the information about a training data point’s robustness, and use each of these distance
values as features in the generated embedding.

As an implementation detail, we sample between uniform, laplacian and gaussian noise to generate
embedding features. To measure the final perturbation distance from the initial starting point, we
use different `p norms for each of the noise sampling methods. For uniform noise, we compute
the `∞ distance; for gaussian noise, the `2 distance; and for laplacian noise, the `1 distance of the
nearest misclassification. We take k steps of Blind Walk up till misclassification. However, we do not
exceed more than 50 steps and prematurely terminate without misclassification in the event that the
prediction label does not change.

Performance of White Box Approach. We find in our evaluations that the white-box MinGD
method generally underperforms the Blind Walk method. This happens despite its ability of being
able to compute the nearest distance to any target class more accurately. While on the onset, this may
seem to be a counter-intuitive result, since generally with more access, the performance of mapping
the neighbours should only increase.

3Note that since we consider the difference in the distribution of outputs of the auxiliary classifier on
embeddings from the test and training set (rather than hard labels from the auxiliary classifier), even in the
absence of this control, we can un-deniably verify the confidence of dataset inference. This is only included to
contrast the difference and make the effects of the method clearer to the reader.
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However, we note an important distinction. The end goal of the query generation process is not to
calculate the minimum distance to target classes accurately, but rather to understand the ‘prediction
margin’ or the local landscape of a given data point. Readers may recall from adversarial examples
literature (Szegedy et al., 2013) that adversarial examples can easily be constructed on the dataset that
a given machine learning model was trained on. This observation hurts the idea of Figure 3b. Despite
pushing the neighbouring class boundaries away, the existence of adversarial examples elucidates the
existence of small pits within the landscape of the model.

We hypothesize that the gradient-based optimization procedure, finds these adversarial regions that
are not ‘truly’ representative of the neighbouring region or the ‘prediction margin’ of a given data
point. We hypothesize that on the contrary Blind Walk is able to perform a spectacular job at the
same end goal. Since we are no longer adversarially trying to optimize the minimum distance to the
neighbouring classes, multiple Blind Walk runs effectively map the ‘average case’ prediction margin,
which we argue is more useful than the ‘worst case’ prediction margin as obtained by MinGD.

G Additional Results

G.1 Table of Results

Table 1 shows our p-values and the effect size ∆µ = µ− µV which captures the average confidence
of our hypothesis test claiming that the model was stolen. Recall that we test our approach against 6
different attackers and in two different settings (Black- and White-box). In addition, Table 1 also
reports ‘Source’ where the victim’s complete model fV has been stolen, and ‘Independent’, the
control model trained on a separate dataset. Understandably, we observe the largest and smallest
effect sizes for these two baselines, which serve as bounds to interpret our evaluation of attacks.

G.2 Effect of Embedding Size

For all models, richer embeddings reduce the need for more reveled samples. (See Figure 4). We
note that in the main body of this work, we had used a fixed size of embedding vector, with 30 input
features. However, recall that in the black-box setting, the victim incurs additional cost for querying
the potential adversary. Therefore, in this section we aim to understand the marginal utility of extra
embedding features added. In general, we find that for most of the threat models studied, using only
10 features for the embedding space is sufficient to achieve the required threshold p-value of 0.01.
This suggests that we can slash the number of queries made to the potential adversary by one-thirds,
without loss in confidence of prediction.

Interestingly, we also note that even in scenarios where the victim reveals only 15 samples, additional
embedding features have insignificant advantage as opposed to querying fresh samples. This suggests
that the amount of entropy gained by revealing a new data point is significantly more than that

Model Stealing Attack
CIFAR10 CIFAR100

MinGD Blind Walk MinGD Blind Walk

∆µ p-value ∆µ p-value ∆µ p-value ∆µ p-value

V Source 1.029 10−12 1.956 10−35 1.566 10−20 1.982 10−44

AD
Distillation 0.334 10−2 0.808 10−3 0.273 10−1 1.015 10−4

Diff. Architecture 0.343 10−3 1.401 10−13 0.977 10−5 1.502 10−14

AM
Zero-Shot Learning 0.274 10−2 0.385 10−2 0.363 10−2 0.395 10−2

Fine-tuning 0.752 10−5 1.914 10−34 1.030 10−6 1.503 10−11

AQ
Label-query 0.210 10−1 0.979 10−4 0.139 10−1 0.107 10−1

Logit-query 0.238 10−2 1.074 10−8 0.233 10−1 0.154 10−1

I Independent 0.002 0.12 -0.317 0.69 -0.176 0.36 -1.753 0.99

Table 1: Ownership Tester’s effect size in a small-data regiment (using only m = 10 samples).
2nd highest and lowest effect size is marked in red and blue. Fine-tuning cannot evade DI, while
Label-query poses the biggest challenges to DI. See full description of the threat models in § D.2.
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Figure 4: p-value vs. distance-embedding size

by extracting more features (beyond 10) for the same data point. We also note that the effect is
not-consistent in the Zero-shot Learning threat model.
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