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Abstract

We use new algorithmic techniques to automatically identify numerous label errors
in the test sets of ten of the most commonly-used computer vision, natural language,
and audio datasets. Errors are widespread: validated using human studies, we
estimate an average of 3.4% errors across ten datasets 1, where for example 2916
errors comprise 6% of the ImageNet validation set. In a case study on ImageNet,
we find that label errors do not corrupt current benchmarks. Unexpectedly, we find
a use for erroneously labeled test data: as a “honeypot” for reliable benchmarking
of generalization accuracy. Independently, in both ImageNet and CIFAR-10, pre-
trained classifiers exhibit a negative correlation in performance on corrected labels
versus performance on original (erroneous) labels on the validation set, with lower
capacity models (e.g. ResNet-18) out-performing more expressible models (e.g.
NasNet), suggesting that this honeypot technique may measure overfitting.

1 Introduction

Large, labeled data sets have been critical to the success of supervised machine learning across the
board in domains such as image classification, sentiment analysis, and audio classification. Labeled
data is usually equated with ground truth. However, this is a fallacy, because datasets can have errors.
The processes used to construct datasets often involve some degree of automatic labeling or crowd-
sourcing, techniques that are inherently error-prone. Even with controls for error correction [14, 35],
errors can slip through. Prior work has considered the consequences of noisy labels, usually in the
context of learning with noisy labels in the train set, and with algorithmic findings validated through
experiments with synthetic label noise. Past research has concluded that label noise is not a major
concern, because of techniques to learn with noisy labels [25, 22], and also because deep learning is
believed to be naturally robust to label noise [28, 30, 12, 19].

However, label errors in test sets have a different set of potential consequences. Researchers
rely on benchmark test datasets to evaluate and measure progress in the state-of-the-art and to
validate theoretical findings. If label errors occurred profusely, they could potentially undermine the
framework by which we measure progress in machine learning. Error-free test set accuracy is needed
– we want to know how ML models perform in practice, not how well they predict erroneous labels.

We present the first study that systematically analyzes the prevalence of label errors across ten
commonly-used datasets across computer vision, natural language processing, and audio processing.
Unlike prior work on noisy labels, we do not experiment with synthetic noise but with naturally-
occurring errors. Using confident learning [23], we identify label errors in test sets at scale, and
validate these label errors through human evaluation, estimating over five million (10%) errors in one
dataset. Figure 1 shows examples of validated label errors.

1To view the mislabeled examples across ten benchmark datasets, go to: https://labelerrors.com.
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Figure 1: Example label errors and their categorization for image datasets.

We use ImageNet and CIFAR-10 as a case studies to understand the consequences of label errors in
test sets. While there are numerous (2916, over 6%) erroneous labels in the ImageNet validation set,
often used as a test set, we find that benchmarking is unaffected by the presence of these label errors.

We find an unexpected use for label errors in the test set: as a “honeypot” for reliable benchmarking
of model generalization accuracy. When benchmarking ImageNet and CIFAR classifiers on what we
call the honeypot set, test data confirmed to be erroneously labeled, we find a negative correlation
between rankings on corrected labels versus the original (erroneous) labels, suggesting overfitting of
high capacity models like NasNet and VGG-19. We hypothesise that this honeypot technique may be
generally useful for reliable benchmarking as a measure for overfitting.

To our knowledge, our work is the first demonstration of learning with noisy labels on real (non-
synthetic) datasets at scale across many datasets, modalities, distributions, and amounts of data.

2 Related work

Finding label errors is related to learning with noisy labels [24, 32, 22, 13, 29], but these approaches
modify the loss without explicit error identification, or require model-specific approaches that do not
generalize across ten diverse datasets. [34, 11, 2, 17] use confusion matrices for noise quantification
error finding, but lack either robustness to class imbalance or theoretical support. Confident learning
(CL) [23] assembles these approaches into a model-agnostic framework with robustness to class
imbalance and theoretical support for exact uncertainty quantification and finding of label errors;
hence, our choice to use CL to estimate the number of label errors. Crowd-sourced curation of labels
via multiple workers [35, 4, 26] is used to validate these errors. [31] confirm multi-class label issues
in the ImageNet dataset; we expand label error finding to more types of errors and datasets.

3 Dataset selection

We consider ten of the most-cited, open-source datasets created in the last 20 years from the Wikipedia
List of ML Research Datasets [3], with preference for diversity across computer vision, NLP,
sentiment analysis, and audio modalities. Citations were obtained via the Microsoft Cognitive API.
Details about each dataset, the original collection procedure of the labels in each dataset, and any
modifications we made (e.g. removing 2-star and 4-star classes from Amazon Reviews) are available
in the appendices (Sec. B). In total, we evaluate six visual datasets: MNIST [16], ImageNet [5],
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QuickDraw [10], CIFAR-10, CIFAR-100 [15], and Caltech-256 [8]; three text datasets: IMDB [18],
Amazon Reviews [20], and 20news [21]; and one audio dataset: AudioSet [6].

4 Identifying label errors in benchmark datasets

To identify label errors in a test dataset with n examples and m classes, we first characterize label
noise in the dataset using the confident learning (CL) framework [23] to estimateQỹ,y∗ , the m×m
discrete joint distribution of observed, noisy labels, ỹ, and unknown, true labels, y∗. Inherent in
Qỹ,y∗ is the assumption that noise is class-conditional [1], depending only on the latent true class,
not the data. This assumption is commonly used [7, 29] because it is reasonable. For example, in
ImageNet, a tiger is more likely to be mislabeled cheetah than flute.

The diagonal entry, p̂(ỹ=i, y∗=i), of matrix Qỹ,y∗ is the probability that examples in class i are
correctly labeled. Thus, if the dataset is error-free, then

∑
i∈[m] p̂(ỹ=i, y

∗
=i) = 1. The fraction

of label errors is ρ = 1 −
∑

i∈[m] p̂(ỹ=i, y
∗
=i) and the number of label errors is ρ · n. To find

label errors, we choose the top ρ · n examples ordered by the normalized margin: p̂(ỹ=i;x,θ) −
maxj 6=i p̂(ỹ=j;x,θ) [33]. Table 1 shows the number of CL guessed label errors for each test set.

CL Qỹ,y∗ estimation is summarized in the appendices (see Sec. A). To produce the results in this
paper, we used the open-source implementation of confident learning in the cleanlab package2.

Computing out-of-sample predicted probabilities EstimatingQỹ,y∗ for CL noise characterization
requires two inputs for each dataset: (1) out-of-sample predicted probabilities P̂k,i (n×m matrix)
and (2) the test set labels ỹk. We observe best results computing P̂k,i by pre-training on the train
set, then fine-tuning (all layers) on the test set using cross-validation to ensure P̂k,i is out-of-sample.
If pre-trained models are easily accessible and open-sourced (e.g. ImageNet), we use them instead
of pre-training ourselves. If the dataset did not have an explicit test set (e.g. QuickDraw), we skip
pre-training, and compute P̂k,i using cross-validation on the entire dataset. For all datasets, we try
multiple models that achieve near state-of-the-art accuracy with light hyper-parameter tuning, and
use the model yielding highest cross-validation accuracy, reported in Table 1.

Using this approach allows us to find label errors without manually checking the entire test set,
because CL identifies potential label errors automatically.

Table 1: Test set errors prominent across common benchmark datasets. Errors are estimated using
confident learning (CL) and validated by human workers on Mechanical Turk.

Dataset Modality Size Model Test Set Errors
CL guessed MTurk checked validated estimated % error

MNIST image 10,000 2-conv CNN 100 100 (100%) 15 - 0.15
CIFAR-10 image 10,000 VGG 275 275 (100%) 54 - 0.54
CIFAR-100 image 10,000 VGG 2235 2235 (100%) 585 - 5.85
Caltech-256 image 30,607 ResNet-152 4,643 400 (8.6%) 65 754 2.46
ImageNet* image 50,000 ResNet-50 5,440 5,440 (100%) 2,916 - 5.83
QuickDraw image 50,426,266 VGG 6,825,383 2,500 (0.04%) 1870 5,105,386 10.12
20news text 7,532 TFIDF + SGD 93 93 (100%) 82 - 1.11
IMDB text 25,000 FastText 1,310 1,310 (100%) 725 - 2.9
Amazon text 9,996,437 FastText 533,249 1,000 (0.2%) 732 390,338 3.9
AudioSet audio 20,371 VGG 307 307 (100%) 275 - 1.35
*Because the ImageNet test set labels are not publicly available, the ILSVRC 2012 validation set is used.

5 Validating label errors

We validated algorithmically-identified label errors with a Mechanical Turk study. For three datasets
with a large number of errors, we checked a random sample; for the rest, we checked all errors.

We presented workers with hypothesized errors and asked them whether they saw the (1) given label,
(2) the top CL-predicted label, (3) both labels, or (4) neither label in the example. To aid the worker,

2https://github.com/cgnorthcutt/cleanlab is used to find label errors via confident learning.
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the interface included examples, drawn from the training set, of the given class and the CL-predicted
class. See Appendix C for details.

Each CL-identified label error was independently presented to five workers. We consider the example
validated (an “error”) if fewer than three of the workers agree that the data point has the given label
(agreement threshold = 3 of 5) , otherwise we consider it to be a “non-error” (i.e. the original label
was correct). We further categorize label errors, breaking them down into (1) “correctable”, where a
majority agree on the CL-predicted label; (2) “multi-label”, where a majority agree on both labels
appearing; (3) “neither”, where a majority agree on neither label appearing; and (4) “non-agreement”,
a catch-all category for when there is no majority of workers. Beyond just validating whether potential
errors are indeed errors, we categorize errors in this way because only the correctable errors may be
used in a honeypot. Table 2 summarizes the results, and Figure 1 shows example label errors from
image datasets. Examples from text and audio datasets are given in Appendix D.

Table 2: Mechanical Turk validation confirming the existence of pervasive label errors.

Dataset Test Set Errors Categorization
non-errors errors non-agreement correctable multi-label neither

MNIST 85 15 2 10 - 3
CIFAR-10 221 54 32 18 0 4
CIFAR-100 1650 585 210 318 20 37
Caltech-256 335 65 25 22 5 13
ImageNet 2524 2916 598 1428 597 293
QuickDraw 630 1870 563 1047 20 240
20news 11 82 43 22 12 5
IMDB 585 725 552 173 - -
Amazon 268 732 460 272 - -
AudioSet 32 275 - - - -

6 Case studies: ImageNet and CIFAR-10, honeypots, and benefits
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Figure 2: Benchmark ranking comparison of 34 models pre-trained on ImageNet and 13 pre-trained
on CIFAR-10 (more details in Tables 4 and 3 and Fig. 4b, in the Appendix). Benchmarks are
unchanged by removing label errors (a), but change drastically on the Honeypot subset with original
(erroneous) labels versus corrected labels, e.g. Nasnet: 1/34→ 29/34, ResNet-18: 34/34→ 1/34.

What are the consequences of test set label errors? Figure 2 compares performance on the ImageNet
validation set, commonly used in place of the test set, of 34 pre-trained models from the PyTorch and
Keras repositories. Figure 2a confirms the observations in [27]; benchmarks are unchanged by using
a clean test set, i.e. in our case by removing errors.

However, we find a surprising result upon closer examination of models’ performance on the
erroneously labeled data, which we call the “honeypot set”. When evaluating models only on the
honeypot, models which perform best on the original (incorrect) labels perform the worst on corrected
labels, e.g. ResNet-18 significantly outperforms NasNet. We verified that the same result occurs
independently across 13 models pre-trained on CIFAR-10 (Figure 2c), e.g. VGG-11 significantly
outperforms VGG-19. This phenomenon, shown in Figures 2b and 2c, may indicate two key insights:
(1) low-capacity models provide unexpected regularization benefits in light of label error prevalence
across benchmark datasets and (2) standard benchmark models either had access to the test set during
training, perhaps in the form of hyper-parameter optimization, or overfit to noise in training data.

We see this as a potential benefit of test set label errors: due to the prevalence of label errors in many
benchmark datasets, this honeypot technique to identify overfitting to test sets is readily applicable to
many datasets and trained models.
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A Summary of confident learning (CL) for finding label errors

We briefly summarize CL joint estimation here. An unnormalized representation of the joint, called
the confident joint and denoted Cỹ,y∗ , is estimated by counting all the examples with noisy label
ỹ = i, with high probability of actually belonging to label y∗ = j. This binning can be expressed as:

Cỹ,y∗ = |{x ∈Xỹ=i : p̂(ỹ = j;x,θ) ≥ tj}|

where x is a data example (e.g. an image), Xỹ=i is the set of examples with noisy label ỹ = i,
p̂(ỹ = j;x,θ) is the out-of-sample predicted probability that example x actually belongs to noisy
class ỹ = j (even though its given label ỹ = i) for a given model θ, and tj is a per-class threshold
that, in comparison to other confusion matrix approaches, provides robustness to heterogeneity in
class distributions and class distributions, defined as:

tj =
1

|Xỹ=j |
∑

x∈Xỹ=j

p̂(ỹ = j;x,θ) (1)

A caveat occurs when an example is confidently counted into more than one bin. When this occurs,
the example is only counted in the argmaxl∈[m] p̂(ỹ = l;x,θ) bin.

Qỹ,y∗ is estimated by normalizing Cỹ,y∗ , as follows:

Q̂ỹ=i,y∗=j =

Cỹ=i,y∗=j∑
j∈[m] Cỹ=i,y∗=j

· |Xỹ=i|∑
i∈[m],j∈[m]

(
Cỹ=i,y∗=j∑

j∈[m] Cỹ=i,y∗=j
· |Xỹ=i|

) (2)

The numerator calibrates
∑

j Q̂ỹ=i,y∗=j = |Xi|/
∑

i∈[m]|Xi|,∀i∈[m] so that row-sums match the
observed prior over noisy labels. The denominator makes the distribution sum to 1.

B Dataset details

For each of the datasets we investigate, we summarize the original data collection and labeling
procedure as they might pertain to potential label errors.

MNIST [16]. MNIST is a database of binary images of handwritten digits. The dataset was
constructed from Handwriting Sample Forms distributed to Census Bureau employees and high
school students; the ground-truth labels were determined by matching digits to the instructions of
the task in order to copy a particular set of digits [9]. Label errors may arise from handwriting
ambiguities; a digit may be written in a way that makes it impossible to determine what the given
label is.

ImageNet [5]. ImageNet is a database of images and classes to benchmark image classification
models. Images are scraped automatically by querying words from WordNet "synonym sets" (synsets)
on image search engines. The images are labeled with Amazon Mechanical Turk workers who are
asked whether each image contains objects of a particular given synset. Workers are instructed to
select images that contain objects of a given subset regardless of occlusions, number of objects, and
clutter to "ensure diversity" in the dataset’s images.

IMDB [18]. The IMDB Large Movie Review Dataset is a collection of movie reviews to benchmark
binary sentiment classification. The labels are automatically determined by the user’s review (a score
≤ 10 out of ten is considered negative; ≥ 7 is considered positive).

QuickDraw [10]. The Quick, Draw! dataset contains more than 1 billion doodles collected from
users of an experimental game to benchmark image classification models. Users were instructed to
draw pictures corresponding to a given label, but the drawings may be "incomplete or may not match
the label;" however, the test dataset is partially or fully manually-labeled.

Amazon Reviews [20] The Amazon Reviews dataset is a collection of textual reviews and 5-star
ratings from Amazon customers used to benchmark sentiment analysis models. Modifications: We
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use 5-core (9.9 GB) variant of the dataset. 2-star and 4-star reviews are removed due to ambiguity
with 1-star, and 5-star reviews, respectively, which if left in the dataset, could inflate error counts.

20news [21] The 20 Newsgroups dataset is a collection of articles posted to Usenet newsgroups used
to benchmark text classification and clustering models. The label for each example is the newsgroup
it was originally posted in (e.g "misc.forsale"), so it is automatically gathering during the overall data
collection procedure.

CIFAR-10 / CIFAR-100 [15] The CIFAR-10 / CIFAR-100 datasets are a collection of small 32× 32
images and labels from a set of 10 or 100 classes, respectively. The images were automatically
collected by querying for the class label. Human labelers were instructed to select images that
matched their class label (query term). Images were intended to only have one prominent instance of
the object, but could be partially occluded as long as it was identifiable to the labeler.

Caltech-256 [8]. Caltech-256 is a database of images and classes. Images were automatically
downloaded from image search engines. Four human labelers were instructed to rate the images into
"good," "bad," and "not applicable," eliminating the images that were confusing, occluded, cluttered,
artistic, or not an example of the object category from the dataset.

AudioSet [6]. AudioSet is a collection of 10-second sound clips drawn from YouTube videos and
multiple labels describing the sounds that are present in the clip. Three human labelers independently
rated the presence of one or more labels (as "present," "not present," and "unsure"), and majority
agreement was required to assign a label. The authors note that spot checking revealed some label
errors due to "confusing labels, human error, and difference in detect of faint/non-salient audio
events."

C Mechanical Turk study details

Figure 3 shows the Mechanical Turk worker interface, here shown with a data point from the
CIFAR-100 dataset.

Figure 3: Mechanical Turk worker interface. For each image suspected of being a label error, the
interface presents the image, along with example images belonging to the given class. The interface
also shows images belonging to the confidently predicted class. Either the given is shown as (a) and
predicted is shown as (b), or vice versa (chosen randomly). The worker is asked whether the image
belongs to class (a), (b), both, or neither.

8



D Example label errors from text and audio datasets

D.1 20news

D.1.1 Non-agreement

Given: comp.sys.mac.hardware; Alternative: misc.forsale.

From: Donald.Lyles@f421.n109.z1.his.com (Donald Lyles)
Subject: PB MEMORY FOR SALE
Lines: 12

Two meg. sim that came from a PB100 for sale. I am asking $60 (postage
included). If you are interested please e-mail me via internet. If you do
not
have internet availability you may contact me at 301/468-0241.

*****************************
* Reply to Donald Lyles *
* Internet: dcl@his.com *
*****************************

D.1.2 Correctable

Given: comp.sys.ibm.pc.hardware; Corrected: comp.graphics.

From: brnj_ltd@uhura.cc.rochester.edu (Bernard C. Jain)
Subject: Any STB-POWERGRAPH users out there that know about it!?
Summary: powergraph
Keywords: sbt poergraph powergraph
Nntp-Posting-Host: uhura.cc.rochester.edu
Organization: University of Rochester - Rochester, New York
Lines: 17

HELP! I am trying to view .JPG files with my 386SX, 20MHz machine
. I have a STB-POWERGRAPH graphics card with 1024 X 768 by 256 colors,
with 1Meg RAM on it.

I have tried CVIEW097 (with windows-- EXTREMELY SLOW), and DVPEG24.
DVPEG24 doesn’t work! Even if I pick a lot of the "modes" that are
supported by POWERGRAPH (so it says in the manual), it doesn’t work
when I try to view a picture... it only buzzes.

Anyone out there that can help me; give me suggestions?

I would really appreciate it!

Thanks!

D.1.3 Multi-label

Given: comp.os.ms-windows.misc; Also: comp.graphics.

From: mkr@Comtech.com (Mark K. Reha)
Subject: 15 bit RGB
Organization: Comtech Labs Inc, Palo Alto
Distribution: usa
Lines: 3
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I am working with 24 bit RGB BMP files and need to
comvert these to 15 and 16 bit images. How do convert
24 bit images to 15 and 16 bit RGB images? Thanks!

D.1.4 Neither

Given: sci.crypt; Alternative: talk.politics.guns.

From: feustel@netcom.com (David Feustel)
Subject: Re: The Escrow Database.
Organization: DAFCO: OS/2 Software Support & Consulting
Lines: 5

And the fox has rabies too.
--
Dave Feustel N9MYI <feustel@netcom.com>

<sig being revised>

D.2 IMDB

D.2.1 Non-agreement

Given: positive; Alternative: negative.

What about DJ Cash Money??? This film fails in part by not covering the mid to
late 80s. There was only a small mention of DJ Cheese in 86.<br /><br />Also,
it’s Grandmixer "DST", not "DXT"!!!!!

D.2.2 Correctable

Given: positive; Corrected: negative.

I cannot understand the need to jump backwards and forwards to scene set, and
pad out the plot. Showing that someone has a skill right before they use it, I
believe, is offending our intelligence. It’s starting to feel a little
contrived, and as though they are making up for being so vague for the first
three series. A little disappointing this episode.<br /><br />Furthermore,
using past quirks, like Locke’s ability to know when a storm is ending, is
frankly insulting... are we supposed to ooh and arr, or laugh at the softer
side of Locke?<br /><br />This episode was all over the place.

D.3 Amazon

D.3.1 Non-agreement

Given: positive; Alternative: negative.

We find that viewers are universally unhappy with the failure of the Producers
to follow on with a fourth seadon.

D.3.2 Correctable

Given: neutral; Corrected: positive.

Great little coffee table book. Beautifully presented and perfect for
triggering good conversations with mates, but I was really hoping to read more
about the guys and what they’ve been up to!
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D.4 AudioSet

D.4.1 Non-agreement

Given: whistle, Alternative: music, pop music, rhythm and blues, zing.

http://youtu.be/hIQhby-OLk4?start=30&end=40

D.4.2 Correctable

Given: organ, electronic organ; Corrected: music, soul music, swing music, funk.

http://youtu.be/kxkk4w2yzbk?start=30&end=40

E Case study benchmarking details
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(a) ImageNet val set, with errors removed.

5% 12% 20%
Top-1 Acc on Honeypot (original labels)

60%

70%

80%

To
p-

1 
Ac

c 
on

 H
on

ey
po

t
(c

or
re

ct
ed

 la
be

ls
)

Nasnet

ResNet-18

Nasnet

ResNet-18

Nasnet

ResNet-18

(b) ImageNet Honeypot errors, with corrected labels.

Figure 4: Benchmark ranking comparison of 34 models pre-trained on ImageNet val set for all
settings of agreement threshold. Benchmarks are unchanged by removing label errors (a), but change
drastically on the Honeypot subset with original (erroneous) labels versus corrected labels, e.g.
Nasnet re-ranking: 1/34→ 29/34, ResNet-18 re-ranking: 34/34→ 1/34. Test set sizes: original (a):
50,000; cleaned (a): 47,114 (N), 46,481 (•), 45,618 (?); corrected (b): 1405 (N), 943 (•), 460 (?).

Figure 2 depicts how the benchmarking rankings on the honeypot set of ImageNet examples change
significantly for an agreement threshold = 5, meaning 5 of 5 human raters needed to independently
select the same alternative label for that data point and new label to be included in the accuracy
evaluation. To ascertain that the results of this figure are not due to the setting of the agreement
threshold, the results for all three settings of agreement threshold are shown in Figure 4b. Observe
the negative correlation occurs in all three settings.

Table 3 provides the details of the accuracy scores and rankings for each model, for the setting of a
majority agreement threshold (3 of 5). The ImageNet test set sizes are: original: 50,000; cleaned:
45,618; and corrected: 460. The CIFAR-10 test set sizes are: original: 10,000 and corrected: 18.

Notably in Table 3, many rankings change drastically when benchmarked on the correct labels. For
example, Nasnetlarge drops from ranking 1/34 to ranking 29/24, Xception drops from ranking 2/34
to 25/34, ResNet-18 increases from ranking 34/34 to ranking 1/34, and ResNet-50 increases from
ranking 20/24 to 2/24. These dramatic changes in ranking may be explained by overfitting to the
validation when these models are trained, which can occur inadvertently during hyper-parameter
tuning, or by overfitting to the noise in the training set. These results provide evidence that correct
labels on a secret honey pot set of label errors may provide a useful framework for detecting overfitting
on test sets, toward a more reliable approach for benchmarking generalization accuracy across ML
models.

The benchmarking experiment was replicated on CIFAR-10 in addition to ImageNet. The individual
accuracies for CIFAR-10 are reported in Table 4. Surprisingly, like the case with ImageNet, smaller
capacity models tend to out-perform higher capacity models when benchmarking on the

Whereas traditional notions of benchmarking generalization accuracy assume the train and test
distributions are the same, this is nonsensical in the case of noisy training data – the test dataset
should never contain noise because in real-world applications, we want a trained model to predict
the error-free outputs on unseen examples, and benchmarking should measure as such. In two
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Table 3: Individual accuracy scores for Figure 4b with agreement threshold = 3 of 5. Acc@1 stands
for the top-1 validation accuracy on the Honeypot set of original ImageNet examples and labels.
cAcc@1 stands for the top-1 val accuracy on the Honeypot set of ImageNet examples with correct
labels. To be corrected, at least 3 of 5 Mechanical Turk raters had to independently agree on a new
label, proposed by us, using the argmax probability for the example.

Platform Model Acc@1 cAcc@1 Acc@5 cAcc@5 Rank@1 cRank@1 Rank@5 cRank@5

PyTorch 1.0 resnet18 6.48 82.28 73.88 99.57 34 1 28 1
PyTorch 1.0 resnet50 13.52 73.74 80.07 98.43 20 2 10 2
PyTorch 1.0 vgg19_bn 13.10 73.17 79.86 97.94 23 3 11 11
PyTorch 1.0 vgg11_bn 11.03 73.02 76.23 97.58 31 4 22 15
PyTorch 1.0 densenet169 14.16 72.53 79.79 98.29 16 6 12 3
PyTorch 1.0 resnet34 13.31 72.53 77.86 98.15 21 5 17 5
PyTorch 1.0 densenet121 14.38 72.38 78.58 97.94 14 7 16 9
PyTorch 1.0 vgg19 13.10 72.17 79.29 98.08 22 8 13 7
PyTorch 1.0 resnet101 14.66 71.89 81.28 98.22 12 9 5 4
PyTorch 1.0 vgg16 12.38 71.46 77.44 97.15 28 10 19 19
PyTorch 1.0 densenet201 14.73 71.17 80.78 97.94 10 11 6 10
PyTorch 1.0 vgg16_bn 13.67 71.10 77.72 97.51 19 12 18 16
Keras 2.2.4 densenet169 13.95 70.89 79.07 98.15 18 13 15 6
PyTorch 1.0 densenet161 15.23 70.75 80.28 98.01 7 14 8 8
Keras 2.2.4 densenet121 14.02 70.39 76.37 97.44 17 15 20 17
PyTorch 1.0 vgg11 13.02 70.25 75.30 97.22 25 17 27 18
PyTorch 1.0 resnet152 15.37 70.25 81.71 97.86 5 16 4 12
PyTorch 1.0 vgg13_bn 12.74 69.89 75.80 97.01 27 18 24 20
Keras 2.2.4 nasnetmobile 14.23 69.40 79.22 96.80 15 20 14 22
PyTorch 1.0 vgg13 13.10 69.40 76.23 96.80 24 19 21 23
Keras 2.2.4 densenet201 15.30 69.11 80.21 97.72 6 21 9 13
Keras 2.2.4 mobilenetV2 14.66 68.54 75.73 96.58 11 22 25 25
Keras 2.2.4 inceptionresnetv2 17.37 68.26 83.27 96.87 3 23 2 21
Keras 2.2.4 inceptionv3 16.23 68.19 80.36 96.73 4 24 7 24
Keras 2.2.4 xception 17.79 68.11 82.06 97.58 2 25 3 14
Keras 2.2.4 vgg19 11.89 67.83 73.81 95.52 29 26 30 30
Keras 2.2.4 mobilenet 14.45 67.40 73.74 96.09 13 27 31 27
Keras 2.2.4 resnet50 14.88 66.69 76.16 95.66 9 28 23 28
Keras 2.2.4 nasnetlarge 19.79 66.26 84.20 96.51 1 29 1 26
Keras 2.2.4 vgg16 12.88 65.91 73.81 95.66 26 30 29 29
PyTorch 1.0 inception_v3 14.95 65.55 75.59 95.30 8 31 26 31
PyTorch 1.0 squeezenet1_0 9.75 63.42 60.28 91.81 32 32 34 33
PyTorch 1.0 squeezenet1_1 9.47 62.35 61.64 92.31 33 33 33 32
PyTorch 1.0 alexnet 11.25 58.72 62.56 89.18 30 34 32 34

independent experiments in ImageNet and CIFAR-10, we observe that models, pre-trained on the
original (noisy) datasets, with less expressibility (e.g. ResNet-18) tend to outperform higher capacity
models (e.g. NasNet) on the corrected test set labels.
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Table 4: Individual CIFAR-10 accuracy scores for Figure 4b with agreement threshold = 3 of 5.
Acc@1 stands for the top-1 validation accuracy on the Honeypot set (n = 18) of original CIFAR-10
examples and labels. See Table 3 caption for details. Discretization of accuracies occurs due to
limited number of corrected examples on the CIFAR-10 test set.

Platform Model Acc@1 cAcc@1 Acc@5 cAcc@5 Rank@1 cRank@1 Rank@5 cRank@5

PyTorch 1.0 googlenet 55.56 38.89 94.44 94.44 1 10 13 13
PyTorch 1.0 vgg19_bn 50.00 38.89 100.00 100.00 2 11 7 7
PyTorch 1.0 densenet169 44.44 50.00 100.00 100.00 5 4 2 2
PyTorch 1.0 vgg16_bn 44.44 44.44 100.00 100.00 3 8 5 5
PyTorch 1.0 inception_v3 44.44 33.33 100.00 100.00 6 12 8 8
PyTorch 1.0 resnet18 44.44 55.56 94.44 100.00 4 2 10 10
PyTorch 1.0 densenet121 38.89 50.00 100.00 100.00 8 5 3 3
PyTorch 1.0 densenet161 38.89 50.00 100.00 100.00 9 6 4 4
PyTorch 1.0 resnet50 38.89 44.44 100.00 100.00 7 9 6 6
PyTorch 1.0 mobilenet_v2 38.89 27.78 100.00 100.00 10 13 9 9
PyTorch 1.0 vgg11_bn 27.78 66.67 100.00 100.00 11 1 1 1
PyTorch 1.0 resnet34 27.78 55.56 94.44 100.00 13 3 11 11
PyTorch 1.0 vgg13_bn 27.78 50.00 94.44 100.00 12 7 12 12
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