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Abstract

Visually-aware recommendation leverages visual signals of product images ex-
tracted through Deep Neural Networks to improve the recommendation perfor-
mance. However, human-imperceptible adversarial noise can alter recommen-
dation outcomes, e.g., pushing/nuking specific product categories. In this work,
we provide 24 combinations of attack/defense strategies, and visual-based recom-
menders to 1) access performance alteration on recommendation and 2) empiri-
cally verify the effect on final users through offline-visual metrics. The results
suggest defense is not protecting recommender models as expected, and shed
light on the importance of human evaluation to identify visual attacks on rec-
ommendations. Source code, data, and experimental parameters are available at
https://github.com/sisinflab/Perceptual-Rec-Mutation-of-Adv-VRs.

1 Introduction
Recommender Systems (RSs) provide the set of the most relevant products to the customers of
online sellers. In domains such as fashion and food, visual signals associated with pictures influence
users’ decisions. Benefiting from the power of Deep Neural Networks (DNNs) in extracting high-
level visual aspects from images, the class of Visual Recommender Systems (VRSs) achieved
significant success in learning high-quality recommendations. He and McAuley [9, 10] proposed
Visual Bayesian Personalized Ranking (VBPR) demonstrating terrific performance improvement
compared to BPR-MF by Rendle et al. [16] with the simple integration of image features extracted
from AlexNet [12].

Unfortunately, DNNs are vulnerable to adversarial examples [19, 1] minimal-corrupted images crafted
to fool the network. Szegedy et al. [19] formalized the adversarial generation problem by solving
a box-constrained L-BFGS. Goodfellow et al. [8] used the sign of the gradient of the loss function
to perturb the images in the Fast Gradient Sign Method (FGSM). Madry et al. [14] adapted FGSM
and Basic Iterative Method [7] to iteratively update the perturbation and get stronger adversarial
samples. Carlini and Wagner [4] (C & W) boosted the Szegedy et al. [19] strategy to craft powerful
samples able to deceiving state-of-the-art adversarial detector [3]. However, the Adversarial Training,
proposed by Goodfellow et al. [8], has demonstrated substantial DNN’s protection when adversarial
samples are injected into the training data at a long-time training cost. This issue has been recently
addressed by Shafahi et al. [17] with the proposal of the 3− 30 times faster Free Adversarial Training.

Consequently, adversarially-perturbed product images have been also shown to fool the DNNs used
in VRS to extract the visual features [5]. Tang et al. [20] tested the accuracy degradation when VBPR
is trained on noisy images (integrity attack), while Di Noia et al. [6] demonstrated the adversary’s
capability to increase (or decrease) the recommendability of a category of products (integrity attack)
even on the adversarial regularized [11] version of VBPR, namely AMR [20].
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a. Clean
Rec. Position: 68th

b. Attack + T
Rec. Position: 10th

LPIPS: 0.5484

c. Attack + AT
Rec. Position: 27th

LPIPS: 0.5347

d. Attack + FAT
Rec. Position: 40th

LPIPS: 0.3447

Figure 1: (a) is the image of a low-recommended product. (b, c, d) are the perturbed versions with PGD (ε = 8)
applied against DNNs without defense (T), or with the Adversarial Training (AT) and Free AT (FAT). The attacks
have pushed the product towards higher ranking positions without visually-perceptible artifacts.

In this paper, we investigate the efficacy of defensive mechanisms [8, 17] against powerful attacks [8,
14, 2] when the adversary wants to alter the recommendation lists of a VRS by poisoning the training
data by inserting adversarial product images, e.g., one perturbs images of low popular products so
that they are misclassified as popular ones. Furthermore, we provide a visual-oriented evaluation of
adversarial images through offline visual metrics trying to mimicking human evaluation to verify to
what extent users might become aware of such subtle data poisoning in the received recommendations
(Figure 1).

The main contributions of this paper are twofold: (1) we verify the inefficacy of state-of-the-art
adversarial training procedure in defending the DNNs used in VRS from adversarially-poisoned
training product images; (2) we evaluate the human-perceptibility with offline measures.

2 The Threat Model
Given the set of users U , items I , the matrix of historical interactions S , the recommendation problem
is defined as the task to suggest products by maximizing the user’s gain g(u). The state-of-the-art RS,
BPR-MF [16, 15], solves g(u) by maximizing a loss function over a set of triplets T defined as:

LBPR =
∑

(u,i,j)∈T

− lnσ(ŝui − ŝuj) + λ‖θ‖22 (1)

where λ is the regularization coefficient, σ(·) is a sigmoidal function, and ŝui, the predicted preference
score of the user u on the item i measured as ŝui = pTu qi. Here, pu and qi are the user-specific and
item-specific latent features, respectively. Then, for each item i, xi is the associated product image.
Let fi the visual signal extracted from a DNN whose function model is F , i.e., fi is the output of the
first fully-connected layer placed immediately after the convolutional part. Then, He and McAuley
[9] extended BPR-MF by integrating the visual signal while measuring ŝui. The new formulation is:

ŝui = pTu qi + ρTu (Efi)︸ ︷︷ ︸
visual signal

(2)

where ρu is the user’s visual factor, and E is an embedding matrix to project fi into the same
dimensional space as for ρu.

The dependence of a VRS from the visual signal in Equation 2 has been exploited by adversaries
to poison the training data with the insertion of adversarial samples [20, 6, 13]. To generate the
targeted adversarial attack the optimization problem formulation is:

max
δi:‖δi‖p≤ε

LF (xi + δi, yi) s.t. yi = m (3)

where LF is the cost function of F , δi is the ε-bounded perturbation of xi that will make the product
image be misclassified by F as the (more popular) product category m, and ‖·‖p is the Lp norm. For
instance, the adversary can poison the data adding a perturbed image of “Jersey, T-shirt” misclassified
as “Brassiere” (Fig. 1) causing a variation in the VRS since fi will be extracted from xadvi = xi + δi.

Recently, studies on the robustification of DNNs have shown the adversarial training by Goodfellow
et al. [8] is one of the most prominent defense technique. After the definition of the adversary threat
model (i.e., the attack strategy), the adversarial minimax formulation is:

min
θ̃

∑
(xi,yi)∈I

max
δi:‖δi‖p≤ε

LF (xi + δi, yi) (4)
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Table 1: CHR@20 results on Amazon Women and Amazon Men. We mark in bold the most effective attacks.
Model Attack Amazon Women Amazon Men

T AT FAT T AT FAT

VBPR

No-Attack 0.4377 0.5108 0.3417 0.6352 0.3028 0.3702
FGSM (ε = 4) 0.3860 0.6032 0.6088 0.5665 0.6029 0.5688
FGSM (ε = 8) 0.4057 0.6186 0.6313 0.6052 0.5879 0.5596
PGD (ε = 4) 0.4377 0.6309 0.6263 1.0936 0.6211 0.5778
PGD (ε = 8) 1.4462 0.6413 0.6139 1.5736 0.6247 0.6141
C&W 0.4147 0.6280 0.5729 0.5972 0.6652 0.6444

AMR

No-Attack 0.9449 0.8342 0.5063 0.3876 0.4924 0.1070
FGSM (ε = 4) 1.3173 0.7135 0.4565 0.3295 0.4332 0.4103
FGSM (ε = 8) 1.2814 0.7137 0.4429 0.3053 0.4318 0.4007
PGD (ε = 4) 1.1958 0.6473 0.4900 0.8064 0.4435 0.4173
PGD (ε = 8) 1.2377 0.6770 0.4445 2.1264 0.4323 0.3942
C&W 1.3012 0.7159 0.4977 0.3610 0.4293 0.4378

where θ̃ represents the model parameters of the robustified network (F̃ ).

Let f̃i the visual features of the image xi associated to a product image extracted from F̃ . In this
work, we want to verify if the application of adversarial training methods can limit poisoning attacks
against VRSs [20, 6] since each user-item score prediction ŝui depends on f̃i. Furthermore, we want
to investigate whether the usage of adversarial trained DNNs will make the adversarial perturbation
evident to such an extent that it makes the perturbed samples identifiable via a human evaluation.

3 Experiments
Setup. The experiments are conducted on two fashion datasets, i.e., Amazon Women and Amazon
Men made publicly available by He and McAuley [10]. They come with both users’ ratings and
product pictures uploaded by the platform owner and third-party sellers (say, the possible adversaries).
Amazon Women counts 16668 users, 2981 items, and 54473 ratings, while Amazon Men counts 24379,
7371, and 89020. We split the data following the time-aware leave-one-out protocol [11].

To empirically study the efficacy of defenses and evaluate the visual appearance of adversarial
samples, we tested two VRS: VBPR by He and McAuley [9], and AMR by Tang et al. [20], a VBPR
extension that includes the adversarial regularizer of visual features proposed by He et al. [11]. The
complete set of experimental parameters is reported in the GitHub repository.

Evaluation of Recommendation Performance. Table 1 shows the recommendation variation
before and after the attacks. We evaluate the variation of recommendation with the CHR@K [6],
that measures the average number of a (pushed) category of items in the top-K recommendation
lists. In particular, results in Table 1 are measured on the following source-target combinations:
“Sandal”-“Running Shoe” for Amazon Men, while “Jersey, T-shirt”-“Brassiere” for Amazon Women,
where the adversary tries to push the recommendability of a source category by perturbing the product
picture to be classified as a target class, e.g., the class of a very popular category.

Analyzing VBPR outcomes, PGD attack shows the highest variation of CHR@20 in the defense-free
experiments. For instance, PGD (ε = 8) increases by more than 2.3 times the CHR@20 of the
source category in the <Amazon Women, VBPR, Traditional> setting. The same trend is not true for
the defense contexts. C&W attacks have increased the CHR@20 by 71.09%, while PGD (ε = 8)
by 69.35%. Furthermore, Table 1 confirms that the adversarial training strategies have failed in
protecting VBPR since the data poisoning is always effective in any defended settings.

Investigating AMR results, the attacks are quite effective in the defense-free settings as much as in
VBPR, and confirm PGD (ε = 8) as the most powerful method. Interestingly, the joint usage of (1)
adversarial training procedures on the DNN and (2) the adversarial regularization on the recommender
embeddings (APR) significantly reduced the effectiveness of the dataset poisoning. Indeed, 75% of
attacks have not increased the CHR@20 of the low popular category of products.

Visual Evaluation. To investigate the efficacy of attacks in poisoning the VRS, we studied the
attack Success Rate (SR), the Feature Loss (FL), and the Learned Perceptual Image Patch Similarity
(LPIPS) [21]. Given the importance that visual features hold in VRSs, FL calculates the MSE
between extracted features before and after the attack. That is, it provides a measure of visual features’
shifting in the latent space, and how this has affected recommendation. The idea behind LPIPS
is to produce a perceptual distance value between two similar images by leveraging (1) knowledge
extracted from convolutional layers inside state-of-the-art CNNs and (2) collected human visual
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Table 2: Average values of Success Rate (SR), Feature Loss (FL) and Learned Perceptual Image Patch
Similarity (LPIPS) for each <dataset, attack, defense> combination. LPIPS is multiplied by 100. We mark
in bold the best results for each considered metric.

Dataset Attack
Image Feature Extractor

Traditional Adversarial Training Free Adversarial Training
SR FL LPIPS SR FL LPIPS SR FL LPIPS

Amazon
Women

FGSM (ε = 4) 17.70% 0.0096677 0.2388 0.00% 0.0000113 0.1353 0.00% 0.0000094 0.1041
FGSM (ε = 8) 28.32% 0.0220499 2.8505 2.65% 0.0000851 1.8298 0.00% 0.0000671 1.2119
PGD (ε = 4) 84.96% 0.0276645 0.1860 0.00% 0.0000119 0.1093 0.00% 0.0000102 0.0860
PGD (ε = 8) 100.00% 0.1303309 1.1136 3.54% 0.0000974 0.7683 0.00% 0.0000735 0.6369
C & W 89.38% 0.0212380 0.2678 6.19% 0.0001770 0.0731 6.19% 0.0003376 0.0816

Amazon
Men

FGSM (ε = 4) 65.45% 0.0140948 0.1861 18.32% 0.0000330 0.1407 15.18% 0.0000278 0.1074
FGSM (ε = 8) 86.91% 0.0363190 1.7124 23.56% 0.0002658 2.2903 20.42% 0.0002320 1.2293
PGD (ε = 4) 96.86% 0.0368843 0.1669 18.32% 0.0000334 0.1257 15.18% 0.0000283 0.0892
PGD (ε = 8) 100.00% 0.1349854 0.6916 24.08% 0.0002801 0.7997 20.94% 0.0002371 0.6468
C & W 89.01% 0.0205172 0.2279 48.17% 0.0028022 0.2688 42.41% 0.0019080 0.1490

judgments about those pairs of similar images. We computed this metric fine-tuning a VGG [18]
network since Zhang et al. [21] proposed this configuration as the best one at imitating a real
human-evaluation in circumstances comparable to visual attacks.

Table 2 reports the LPIPS results, along with SR and FL values. It is worth recalling that a
large (small) FL value stands for semantically different (similar) images from DNN’s point of view.
Similarly, a large (small) LPIPS value means the two compared images would likely be considered
as visually different (similar) by humans.

Two general observations arise here. First, the FL is strictly correlated to the SR, i.e., an attack
is successful when the extracted features are noticeably shifted in the latent space. Second, all
attack combinations are able to keep LPIPS values within low ranges, in accordance with the
imperceptible nature of adversarial perturbations on images [19]. Thus, we connect this obtained
measure with the attack efficacy in both failing the classifier (i.e., the DNN) and the VRS. What
follows is a detailed evaluation of scenarios involving —or not— defensive techniques for the DNN.

Defense-free Setting. In the defense-free scenario, PGD (ε = 4) is the least perceptible attack —with
the lowest LPIPS values— even considering a near-100% SR and a successful pushing of attacked
products. On the other hand, FGSM (ε = 8) fails to hide the produced perturbations, reaching the
highest perceptible visual difference on Amazon Women (2.8505). Coherently, this setting also shows
a low SR and a weak alteration of visual recommendations (see Table 1).

Defense Setting. Let us focus on the two defenses. Here, it becomes fundamental to consider the
LPIPS value along with its corresponding SR and recommendation variations. As a matter of fact,
in a defense context, where all attacks averagely tend to perform worse at failing the DNN classifier,
a measured low average LPIPS value might trivially mean very few images were successfully
attacked. For instance, the described situation occurs in the combination <Amazon Men, PGD
(ε = 4), Adversarial Training>. However, since these attacks have still been effective in pushing low
ranked category products (as evident in Table 1), then adversaries could exploit their hardly-human
perceptibility to craft even stronger perturbations (e.g., increasing ε). An intriguing situation is when
LPIPS on the defended DNN is higher than the non-defended one. The worst case is <Amazon
Men, FGSM (ε = 8), Adversarial Training>, which shows a 34% increase of LPIPS compared to
the Traditional training. We explain this result considering that and attack might need to produce
larger perturbations to move the category of the few correctly attacked images (about 24% in the cited
example) towards the targeted one. Not only is the attack inefficient, but it risks human identification.

4 Conclusion
We have presented an empirical study to evaluate the efficacy of defenses (i.e., Adversarial Training
and Free Adversarial Training) to protect DNNs on top of visually-aware recommender systems
when poisoning product image datasets with adversarial attacks. Experiments on state-of-the-art
visual recommenders VBPR and AMR trained on two datasets (i.e., Amazon Women and Amazon
Men) demonstrated the alarming weakness of adversarial training in protecting the recommendation
performance. Furthermore, the visual evaluation suggested defense scenarios with few successfully
attacked images and barely perceptible visual artifacts that still keep breaking recommendation
performance are blind spots that adversaries could explore deeper for their malicious purposes.
Conclusively, we plan to study attack efficacy on overall recommendation performance (accuracy
and beyond-accuracy), propose novel end-to-end defenses, provide a parallel in-depth study on the
impact of perturbed images for humans, the users of the platforms.
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