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Abstract

Measuring the diversity of data is useful both for ensuring that training datasets
contain enough content so that trained models generalize well in settings such
as active learning and also for evaluating generative models. Generative models
are increasingly able to produce remarkably high quality images and text, and
the community has developed numerous evaluation metrics for comparing them.
However, these metrics do not effectively quantify data diversity. We develop a
new diversity metric that can readily be applied to data, both synthetic and nat-
urally occurring, of any type. Our method employs random network distillation,
a technique introduced in reinforcement learning. We validate and deploy this
metric on both images and text. We further explore diversity in few-shot image
generation, a setting which was previously difficult to evaluate.

1 Introduction

State-of-the-art generative adversarial networks (GANs) are able to synthesize such high quality
images that humans may have a difficult time distinguishing them from natural images (Brock et al.,
2018; Karras et al., 2019). Not only can GANs produce pretty pictures, but they are also useful for
applied tasks from projecting noisy images onto the natural image manifold to generating training
data (Samangouei et al., 2018; Sixt et al., 2018; Bowles et al., 2018). Similarly, massive transformer
models are capable of performing question-answering and translation (Brown et al., 2020). In order
for GANs and text generators to be valuable, they must generate diverse data rather than memorizing
a small number of samples. Diverse data should contain a wide variety of semantic content, and its
distribution should not concentrate around a small subset of modes from the true image distribution.

A number of metrics have emerged for evaluating GAN-generated images and synthetic text. How-
ever, these metrics do not effectively quantify data diversity, and they work on a small number of
specific benchmark tasks (Salimans et al., 2016; Heusel et al., 2017). Diversity metrics for synthetic
text use only rudimentary tools and only measure similarity of phrases and vocabulary rather than
semantic meaning (Zhu et al., 2018). Our novel contributions can be summarized as follows:
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• We design a framework (RND) for comparing diversity of datasets using random network
distillation. Our framework can be applied to any type of data, from images to text and
beyond, and does not require a referecne dataset.

• We validate the effectiveness of our method in a controlled setting by synthetically manip-
ulating the diversity of GAN-generated images.

• We benchmark data, both synthetic and natural, using our random distillation method. In
addition to evaluating the most popular ImageNet-trained generative models and popular
language models, we evaluate GANs in the data scarce regime, i.e. single-image GANs,
which were previously difficult to evaluate.

2 Existing Metrics

Inception Score (IS) (Salimans et al., 2016). The Inception Score is a popular metric that rewards
having high confidence class labels for each generated example, according to an ImageNet trained
InceptionV3 network, while also producing a diversity of softmax outputs across the overall set
of generated images (Deng et al., 2009; Szegedy et al., 2016). While this metric does encourage
generated data to be class-balanced and is not fooled by noise, IS suffers from several disqualifying
problems when considered as a measure of diversity. First, it does not significantly reward diversity
within classes; a generative model that memorizes one image from each class in ImageNet may
achieve a very strong score. Second, IS often fails when used on classes not in ImageNet and is not
adaptable to settings outside of natural image classification (Barratt & Sharma, 2018). Finally, IS
does not disentangle diversity from quality. The Inception Score can provide a general evaluation of
GANs trained on ImageNet, but it has limited utility in other settings.

Fréchet Inception Distance (FID) (Heusel et al., 2017). The FID score measures the Fréchet dis-
tance between a Gaussian distribution fit to InceptionV3 features on generated data and a Gaussian
distribution fit to features on ground-truth data, for example natural images on which the genera-
tive model was trained. Unlike IS, FID scores compare generated data to real data, and they do
not explicitly rely on ImageNet classes. Thus, FID more effectively discourages a generator from
memorizing one image per class. However, FID assumes that the training data is “sufficient” and
does not reward producing more diversity than the training data. A second problem with FID is that
it relies on either (1) ImageNet models being useful for the problem at hand or (2) the ability to
acquire a reference dataset and train a high-performance model on the problem. Like IS, FID does
not disentangle diversity from quality and suffers from similar problems.

Several additional metrics have attempted to address these problems to varying degrees of success.
We discuss a number of these metrics in Appendix A.3. Additionally, in natural language process-
ing, several metrics exist for evaluating text generation for dialogue, conversational AI systems,
and machine translation. These include the now widely used Bilingual Evaluation Understudy
(BLEU) score Papineni et al. (2002), as well as proposed metrics for counting the number of unique
n-grams Li et al. (2015); Xu et al. (2018). We discuss these metrics, as well as others in Appendix
A.3. Finally, many other metrics exist for generative models which do not approach the problem of
diversity. Our work is not the first to recognize this gap in the literature (Borji, 2019). See Appendix
A.6 for a discussion regarding the important criteria for a successful diversity metric.

3 Measuring Diversity with Random Network Distillation

We propose a diversity measurement framework, the RND score.In our method, after randomly
splitting the data into train and validation sets, we train a predictor network to predict the feature
vectors output by a randomly initialized target network. This target network is never trained. Then,
the RND score is the average (normalized) generalization gap at the end of training. Intuitively,
when data is diverse, we expect training data to differ significantly from validation data, while when
data is not diverse, we expect training to to be similar to testing data. Thus, a predictor network
trained on training data from a very diverse data distribution should have a harder time predicting
the output of the target network on validation data. The following framework can be applied to
any type of data by choosing a network architecture, size of training split, and a training routine
appropriate for the setting. In Appendix A.7, we demonstrate that RND-based comparisons between
datasets are stable under these choices.
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Given a dataset S, a target network T , and a predictor network P , both with architecture A, let

MSE(T ,P;S) = 1

|S|
∑
x∈S
‖T (x)− P(x)‖22. (1)

We randomly initialize target and predictor networks, T and P , prior to training, and we randomly
split dataset S into train/validation splits, St and Sv . After i epochs of training the predictor network
on this mean squared error loss, let

RNDi(S) =
MSE(T ,Pi;Sv)−MSE(T ,Pi;St)

MSE(T ,Pi;Sv) + MSE(T ,Pi;St)
. (2)

Then, the RND score is given by

RND(S) = E
[

1

n− n0 + 1

n∑
i=n0

RNDi(S)

]
, (3)

where n0 and n denote start/end epochs for measuring RNDi, and the expectation is taken over
random initializations and data splits. Design choices are further discussed in Appendix A.2.

4 Experiments

4.1 Validating RND in a controlled setting

In order to validate RND in a controlled setting, we synthetically manipulate the diversity of GAN-
generated images by truncating latent distributions. The “truncation trick” allows generative models,
such as BigGAN, to improve image quality at the cost of diversity (Brock et al., 2018). Intuitively,
the generator produces better looking (but less diverse) images given a latent vector coming from a
truncated distribution, since similar latent vectors were more likely to be sampled during training.
Thus, a good diversity metric should be able to measure the trade-off in diversity that occurs when
the latent truncation parameter is tuned. It is worth noting that unlike RND, FID scores do not
always rank images according to the extent of their latent truncation. Ravuri & Vinyals (2019) show
that while FID scores do improve as the latent truncation parameter grows from a very small value,
FID scores eventually degrade as the truncation parameter increases.

We validate our diversity measurement by generating images from three different truncation param-
eters in the range found on the TensorFlow Hub implementation of BigGAN. We see in Appendix
A.7 Figure 3 that the RND scores perfectly orders every experiment in terms of the latent truncation
parameter. Additionally, we validate the RND score by verifying that it measures signal, rather than
noise, in Appendix A.7. Details about the training setup and models are in Appendix A.4, A.5.

4.2 ImageNet GANs

ImageNet (ILSVRC2012 dataset - Russakovsky et al. (2015)) is widely considered a difficult task
for generative models because of its size and diversity (Brock et al., 2018). Fittingly, we benchmark
well-known generative models of varying recency on several ImageNet classes. In our comparison,
we include BigGAN (128×128), Self-Attention GAN (SAGAN), and AC-GAN (Brock et al., 2018;
Zhang et al., 2019; Odena et al., 2017). We find that the newer generative models, BigGAN and
SAGAN, generally produce more diverse images than the older AC-GAN model. However, our
metric is able to detect a class where the SAGAN model collapses and produces homogeneous
images (see Figure 1). Note that the training procedure in calculating RND scores varies from that
of the truncation experiments due to the differences in settings such as image size. More details on
this experiment can be found in appendix section A.5.

4.3 Single-Image GANs

Recent work has demonstrated unconditional image generation learned from scarce training data
(Shaham et al., 2019a; Hinz et al., 2020). In this domain, practitioners hope the generated data
will be more diverse than the ground-truth data. FID fails to accurately measure diversity in this
setting because these methods do not seek to replicate the distribution of data they were trained on.
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Figure 1: Left: RND scores (↑) for different ImageNet 128 × 128 GANs. Right top: four im-
ages from BigGAN. Right middle: four images from ACGAN. Right bottom: four images from
SAGAN. All images randomly selected from generated data from the ImageNet class “Tench” (in-
dex 0). The RND score emphasizes the poor diversity in this class of SAGAN data.

Since our metric does not depend on a ground-truth dataset, we avoid these problems and are able to
measure the diversity of images generated by few-shot generative models. We benchmark two recent
methods in the data-scarce regime: SinGAN (Shaham et al., 2019a) and ConSinGAN (Hinz et al.,
2020). Results of the experiments can be found in Figure 5 in Appendix A.7. While ConSinGAN
claims significant advantages in training time over SinGAN, we find that in many cases, SinGAN
actually produces more diverse data than ConSinGAN, confirming the suspicions of Hinz et al.
(2020). More details can be found in Appendix A.5.

4.4 RND in a Natural Language Processing (NLP) Setting

In addition to measuring the diversity of generated images, we also benchmark several NLP models.
We seek to answer the following questions empirically: 1. How does RND measure diversity in a
controlled setting where we manipulate the size of the model vocabulary? 2. How does RND rank
diversity for naturally and synthetically generated text from models of varying capacity?

To answer these questions, we conduct experiments on the WikiText dataset (Merity et al., 2016).
Following Xu et al. (2018), we use the number of distinct tokens in the vocabulary as a surrogate
for controlling diversity. We synthetically manipulate the diversity of the text by truncating the size
of the vocabulary. Similar to our experiments in subsection 4.1, this “truncation trick” allows us to
improve the text quality at the cost of diversity. We validate our diversity measurement by evaluating
text using five different vocabulary sizes: 5k, 10k, 15k, 20k, 25k, where we keep track of the top-k
tokens in the text, and replace the least frequent tokens with an out-of-vocabulary 〈unknown〉 token.

Additionally, we compare the natural text from WikiText to synthetic text from the OpenAI GPT-
1 (Radford et al., 2018) and GPT-2 (Radford et al., 2019) models (see Appendix A.5 for details).

We use a Tranformer model (Vaswani et al., 2017) implemented in Pytorch (Paszke et al., 2019)
as the model architecture for the predictor and target networks. We use the CMU Book Summary
Dataset (Bamman & Smith, 2013) to generate input prompts for the GPT models.

The results are presented in Figure 2, along with RND scores in Appendix Table 3. We plot the
generalization gap versus the number of training epochs. We see that RND captures the correct
ranking of diversity with larger vocabulary sizes achieving higher scores than less diverse text with
smaller vocabulary. Also included in the figure are diversity comparisons for the natural versus
synthetically generated text. We observe that RND captures the correct ranking of diversity with
the more diverse natural text scoring higher than the synthetic text and the more diverse generations
from the stronger GPT-2 model scoring higher than generations from the older GPT-1 model.
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Figure 2: Left: Generalization gap for different vocabulary sizes. RND captures the correct ranking
of diversity with larger vocabulary sizes achieving higher scores than less diverse, smaller vocabu-
lary text. Right: Generalization gap for natural and synthetic text. RND scores the more diverse
natural text higher than the synthetic text, with the stronger GPT-2 scoring higher than GPT-1.
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A Appendix

A.1 Algorithm

Algorithm 1: Random Network Distillation Score
Require: Dataset S, training set size k, number of runs r, start and end RND score epochs, n0

and n, and network architecture A.
for j in {1, . . . , r} do

Randomly initialize target network T and predictor network P .
Randomly split S into training set St with k elements, and validation set Sv ;
for i in 1, . . . , n do

Calculate RNDi as in eq. 2
Update parameters of P to minimize eq. 1

end

Calculate R̂ND
j
=
∑n

i=n−n0
RNDi, the average RND value for run j.

end

Return: 1
r

∑r
j=1 R̂ND

j

A.2 Design Choices

Why random networks? We leverage randomly initialized feature extractors since this keeps the
RND score independent of any auxiliary datasets. Large, pre-trained feature extractors, as seen in
the calculation of FID, are trained to extract useful features for classification problems on a fixed
data distribution. While these feature extractors are often able to extract salient features from other,
like distributions, the utility of pre-trained feature extractors diminishes on drastically different dis-
tributions. Furthermore, we want to separate image fidelity from image diversity. Scores like FID,
which rely upon pre-trained feature extractors, are sensitive to changes in image quality (Ravuri &
Vinyals, 2019). Random features are well-studied, both for kernel methods and neural networks
(Rahimi & Recht, 2008; Rudi & Rosasco, 2017; Yehudai & Shamir, 2019; Mei & Montanari, 2019).

Why normalize the generalization gap? We normalize the generalization gap by the magnitudes
of its components in order to promote scale invariance. Otherwise, data whose entries have larger
magnitudes may receive a higher diversity score, despite having similar semantic content.

Consider the simple case where the target and trained predictor networks, T and P , are linear, and
consider a dataset split into St, Sv . Now, consider the datasets, 2St and 2Sv , formed by multiplying
each element of the original datasets by 2. Since both learning problems are convex, and the target
and predictor networks are of the same family, P = T and MSE(T ,P; 2St) = MSE(T ,P;St) = 0.
However, the generalization gaps have the property that MSE(T ,P; 2Sv) − MSE(T ,P; 2St) =
22[ MSE(T ,P;Sv)− MSE(T ,P;St)] since T (2x)−P(2x)=2(T (x)−P(x)). In other words, the
generalization gap increases substantially if we do not normalize.

How do we estimate the RND score? We estimate the expected value in equation 3 by training the
predictor network with multiple data splits. On each run, we average RNDi at several epochs, n0

through n, to remove noise at no extra computational cost. Experiments concerning the stability of
this estimate can be found in Appendix A.7. See Appendix A.1 Algorithm 1 for a sketch of the RND
score computation pipeline. The exact architecture and training procedure depends on the setting.
For example, we use a transformer architecture to evaluate text, and we use a ResNet architecture
to evaluate images (Vaswani et al., 2017; He et al., 2016). More details about training, and ablation
studies, can be found in appendices A.5 and A.7.

A.3 Other Metrics

The Modified Inception Score (m-IS) uses a cross-entropy term to resolve the fact that IS rewards
models for memorizing one image per ImageNet class (Gurumurthy et al., 2017). However, m-IS
is still beholden to the InceptionV3 label space and still prevents a user from discerning diversity
from quality. Boundary distortion is a method for detecting covariate shift in GAN distributions
by comparing how well classifiers trained on synthetic data perform on ground-truth data (San-
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turkar et al., 2018). This measurement indicates similarity to the true data distribution rather than
purely measuring diversity, and it ignores the possibility of models generating even more diverse
data than the data on which they are trained. Additionally, this method assumes the user has a large
ground-truth dataset. Recently, classification accuracy score (CAS) was introduced to measure the
performance of generative models by training classifiers on synthetic data produced by the gener-
ative models and evaluating the performance of the classifier (Ravuri & Vinyals, 2019). Similar
to the boundary distortion method, this measurement focuses its comparison on the likeness of the
synthetic data distribution to the ground-truth distribution and is dependent upon having access to
labeled ground-truth data.

In natural language processing, several metrics exist for evaluating text generation for dialogue, con-
versational AI systems, and machine translation. Papineni et al. (2002) introduced the now widely
used Bilingual Evaluation Understudy (BLEU) score as a metric for evaluating the quality of ma-
chine translated text. BLEU uses a modified form of precision to compare a candidate translation
against multiple reference translations, where diversity ideally can be evaluated by including all
plausible translations as references when computing the score. However, this requires massive an-
notation cost, and it remains difficult to capture all viable translations for a given sentence. Li et al.
(2015) and Xu et al. (2018) propose counting the number of unique n-grams as a measure for eval-
uating the diversity of text generation tasks in conversational models, however, this metric does not
account for the semantic meaning of different tokens and fails to capture paraphrases of semantically
similar text. Montahaei et al. (2019) propose a joint metric for assessing both quality and diversity
for text generation systems by approximating the distance of the learned generative model and the
real data distribution. This metric couples both diversity and quality in a single metric. Zhu et al.
(2018) introduce Self-BLEU to evaluate sentence variety. Self-BLEU measures BLEU score for
each generated sentence by considering other generations as references. By averaging these BLEU
scores, a metric called Self-BLEU is computed where lower values indicate more diversity. How-
ever, Self-BLEU remains very sensitive to local syntax, and it fails to capture global consistency and
diverse semantic information in generated text.

A.4 Generator Details

ImageNet For validating our method on BigGAN truncation data, we generate im-
ages from a given class at resolution 256 × 256 using pretrained weighs from the
BigGAN TF Hub at a truncation value of 1.0 unless otherwise specified. (https:
//colab.research.google.com/github/tensorflow/hub/blob/master/
examples/colab/biggan_generation_with_tf_hub.ipynb). For comparing Ima-
geNet generative models, we generate images at the 128× 128 resolution since this is the resolution
at which a majority of the models we test produce images. We use pretrained SAGAN, and ACGAN
models taken from https://github.com/ilyakava/gan. The SAGAN baseline model
achieves an FID score of 16.39. The ACGAN baseline model achieve an FID score of 24.72.
For the BigGAN generated images, we again use pretrained weights from the BigGAN TF Hub.
Details about the FID scores of BigGAN can be found in Brock et al. (2018). For 128 × 128 GAN
comparisons, we use 100 training points as compared with 200 for the full resolution, BigGAN
benchmark

Single-Image GANs

To test single-image GANs, we fix randomly selected base image IDs for each ImageNet class
tested, and then generate 200 images from each base image. Then, we collect all the generated
images from multiple ground-truth images, and randomly shuffle these into a training and validation
set. All code taken from the respective github pages for Shaham et al. (2019b); Hinz et al. (2020).
We perform runs with a training split of 100 images because of the relative lack of diversity of
single-image GANs compared with classical GANs trained on a large amount of data. Experiments
were averaged over 20 runs, on a ResNet18 with final 10 epochs averaged out of 40 training epochs.

CelebA We use pretrained models for each of the CelebA experiments. Pretrained models for
ALAE, RealnessGAN can be found on their respective github pages. We use the pretrained PGAN
model found on the pytorch GAN zoo github https://github.com/facebookresearch/
pytorch_GAN_zoo. ALAE requires a base image to generate data, so we randomly sample (un-
conditionally) images from CelebA to generate samples from ALAE.
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NLP: As described in Radford et al. (2018), the GPT-1 model consists of a 12-layer decoder trans-
former with 12 attention heads and 3, 072-dimensional hidden states. GPT-2 (a successor to GPT-1),
was trained to predict the next word in 40GB of Internet text. GPT-2 is a larger transformer-based
language model trained on a dataset of 8 million web pages.

For the experiments in Figure 2, we use word representations of size 400, feedforward layers with
inner dimensions 400, multi-head attention with 4 attention heads. The model is optimized with
Adam (Kingma & Ba, 2014) using a learning rate of 0.001. The learning rate was selected using
a grid search on an independent subset of the WikiText-2 dataset using a grid search with value
ranging from 0.01 to 1e-7. We use 4 transformer encoder layers, and we use a simple linear decoder
for computing the scores over vocabulary tokens.

A.5 Experiment Details

Unless otherwise stated, we run experiments with the following hyperparameter choices:

• Net: ResNet-18
• Learning rate: 0.01
• Epochs to average score: 10
• Epochs: 50
• Number of runs: 40
• Training number: 200
• Optimizer: SGD with momentum = 0.9

We perform ablation studies on these choices in appendix A.7. It is worth noting that within a
fixed comparison like comparing ImageNet GANs in Figure 1, diversity is can be compared, but
comparing diversity scores across experiments is difficult because of changes in the setting such as
image size, training/validation split, architecture. We show stability of these choices within a given
experiment in appendix A.7, but the choices do affect comparisons across experimental settings.

Normalization: To improve comparability across different models, we normalize data to have
mean=0, std=1 for each channel before training the predictor network. We estimate the mean and
std of the distribution using the generated samples.

Measurement time: The measurement time varies depending on how much training data is used,
and how many runs the measurement is averaged over. For 20 runs on an ImageNet class at full
resolution, with the predictor net trained for 50 epochs, the RND score takes approximately 3.85
gpu-hours to complete on a NVIDIA GV100.

Hardware: Experiments were run on a hetergeneous mixture of hardware consisting of NVIDIA
GV100 and NVIDIA RTX 2080 Ti gpus.

A.6 What Do We Want from a Diversity Metric?

Diversity should increase as the data distribution’s support includes more data. For example,
the distribution of images containing brown dogs should be considered less diverse than the distribu-
tion of images containing brown, black, or white dogs. While this property might seem to be a good
stand-alone definition of diversity, we have not yet specified what types of additional data should
increase diversity measurements.

Diversity should reflect signal rather than noise. If a metric is to agree with human perception of
diversity, it must not be highly sensitive to noise. Humans looking at static on their television screen
do not recognize that this noise is different than the last time they saw static on their screen, yet these
two static noises are likely far apart with respect to lp metrics. The need to measure semantic signal
rather than noise precludes using entropy-based measurements in image space without an effective
perceptual similarity metric. Similarly, diversity metrics for text that rely on counting unique tokens
may be sensitive to randomly exchanging words with their synonyms, or even random word swaps,
without increasing the diversity of semantic content.

Quality 6= diversity. While some GANs can consistently produce realistic images, we do not want to
assign their images a high diversity measurement if they produce very little variety. In contrast, other
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GANs may produce a large variety of unrealistic images and should receive high diversity marks.
The quality and diversity of data are not the same, and we want a measurement that disentangles the
two.

Metrics should be agnostic to training data. Recent single-image GANs and few-shot GANs are
able to generate many distinct images from very few training images (sometimes just one) (Sha-
ham et al., 2019b; Clouâtre & Demers, 2019). Thus, a good metric should be capable of producing
diversity scores for synthetic data that are higher than those of the training set. Likewise, simply
memorizing the training data should not allow a generative model to achieve a maximal diversity
score. Moreover, two companies may deploy face-generating models trained on two disjoint pro-
prietary datasets, and we should still be able to compare the diversity of faces generated by these
models without having training set access. An ideal diversity metric would allow one to collect data
and measure its diversity outside of the setting of generative models.

Diversity should be measureable on many kinds of data. Measurements based on hand-crafted
perceptual similarity metrics or high-performance neural networks trained carefully on large datasets
can only be used for the single type of data for which they are designed. We develop a diversity
concept that is adaptable to various domain, including both images and text.

A.7 Additional Experiments

Validating RND via truncation experiments: We see that the RND score is able to perfectly order
data by its latent truncation (a known proxy for diversity).
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Figure 3: Left: RND scores (↑) for BigGAN images generated from latent distributions with various
truncations. Right top: four images from the least diverse (most severely truncated) distribution
(0.02). Right middle: four images from the second least diverse distribution (0.5). Right bottom:
four images from the most diverse distribution (1.0). All images randomly selected from generated
data from the ImageNet class “Academic Gown” (index 400).
Does RND measure signal vs. noise? A good diversity measurement should be able to distinguish
between meaningful features in data, and random noise. As RND was able to distinguish these in
the setting of RL, we expect the RND diversity measurement to be able to distinguish these as well.
To test this, we generate a fixed set of 3-channel noise data (uniform between [0, 1]), and compare
the RND score to a randomly selected ImageNet class (see Figure 4).. We find natural images are
far more diverse than random noise. Averaged over 40 runs.

Measuring diversity in data-scarce regimes: Here we include the results of experiments performed
on SinGAN and ConSinGAN. Note that the authors of SinGAN propose Single-Image FID (SIFID)
to measure performance in this domain. SIFID calculates the Fréchet distance between Gaussian
distributions fit to early layer features (compared with last layer features of the extractor used by
FID). Thus, SIFID also suffers from the problem that simply reproducing the training image mini-
mizes the score. Furthermore, because only one image is used in the feature extraction, SIFID was
later found to exhibit very high variance across generated images and does not provide a valuable
distinction between “better” and “worse” images (Hinz et al., 2020).

Epochs: The RND score is calculated by training a predictor net for n epochs, and averaging over
the last n0 epochs. We perform ablation studies on the number of epochs the predictor net is trained
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Figure 4: Left: RND scores (↑) for random noise, and natural images taken from a randomly selected
ImageNet class. Right top: four images taken from the ImageNet class measured (”Slot” - index
800). Right bottom: four images of random noise used to calculate RND score for random noise.
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Figure 5: Left: RND scores (↑) comparing single-image GANs. Right top: four randomly selected
images generated from a single ImageNet training image by SinGAN. Right bottom: four randomly
selected images generated from a single ImageNet training image by ConSinGAN. Images are from
the class “Tiger Beetle” (index 300).

in Figure 6. We find that while the scale of the RND scores changes slightly, the ordering of the
diversity scores does not change.

Additionally, we test the effect of the choice of n0 on the RND score in Figure 7. We find there is
leeway in this choice of hyperparameter as averaging over 10, 15, 20 epochs all produces the same
ordering in truncation diversity experiments.

Number of Runs: Each run in the calculation of RND corresponds to a new instance of randomly
initialized target and predictor networks. We test the effects of the number of runs used in calculating
the RND score, finding that the relative ordering of diversity for a given class is preserved (see Figure
8).

Confidence Intervals: For the truncation studies in Figure 3, we perform 50 runs resulting in con-
fidence intervals given in Tables 1, 2. The user may tune the number of runs as a hyperparameter
with the tradeoff between time and confidence interval width.

Training/Val split: A hyperparameter choice we make when calculating the RND score is the num-
ber of datapoints in the training set used for distillation. Heuristically, the amount of training data
will make a difference in the RND score in the limiting cases. Too few training data, and the
generalization gap will be large for any dataset, diverse or not. Too many training data, and the
generalization gap for diverse sets will be small provided the network accurately learns the features
of the target network. This is because the distribution will be “saturated” with training data, and the
predictor network will be able to perform well on unseen data. However, we find that the relative
ordering of diversity is stable for a wide band of training splits (see Figure 9).
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Figure 6: Ablation on epochs used to train the predictor net. Truncation experiments repeated as in
3. Left: predictor net trained for 30 epochs. Right: predictor net trained for 40 epochs. While we
see variation in the scores, the relative ordering is preserved across different networks.
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Figure 7: Ablation on epochs used to average in calculating RND score. Truncation experiments
repeated as in 3. Left: RND calculated with final 15 epochs. Right: RND calculated with final 20
epochs. The relative ordering is preserved across different networks.

200 400 600 800
Class Index

0.000

0.005

0.010

0.015

0.020

0.025

0.030

RN
D 

Sc
or

e

0.02
0.5
1.0

200 400 600 800
Class Index

0.000

0.005

0.010

0.015

0.020

0.025

0.030

RN
D 

Sc
or

e

0.02
0.5
1.0

Figure 8: Ablation on runs used to calculate RND score. Truncation experiments repeated as in 3.
Left: 30 runs used in the calculation. Right: 40 runs used in the calculation. The relative ordering
is preserved across number of runs.

Network Architecture:

We test the sensitivity of the RND score to a change in network architecture. Results of these
experiments are presented in Figure 10. We find that there is change in the RND score across
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Table 1: RND (↑) scores with confidence intervals for different truncation parameters.

Class idx 0.02 0.5 1.0

0 0.0025 ± 0.0011 0.0144 ± 0.0059 0.0293 ± 0.0053
100 0.0064 ± 0.0015 0.0184 ± 0.0059 0.0268 ± 0.0056
200 0.0074 ± 0.0016 0.0246 ± 0.0063 0.0257 ± 0.0044
300 0.0045 ± 0.0008 0.0068 ± 0.0065 0.0136 ± 0.0061
400 0.0032 ± 0.0011 0.0145 ± 0.0059 0.0231 ± 0.0073
500 0.0047 ± 0.0013 0.0187 ± 0.0074 0.0250 ± 0.0083
600 0.0049 ± 0.0017 0.0223 ± 0.0098 0.0271 ± 0.0097
700 0.0047 ± 0.0016 0.0205 ± 0.0081 0.0254 ± 0.0061
800 0.0016 ± 0.0007 0.0173 ± 0.0036 0.0232 ± 0.0072
900 0.0024 ± 0.0012 0.0295 ± 0.0083 0.0372 ± 0.0120

Table 2: RND (↑) scores for different ImageNet classes.

Class idx RND score

0 0.0358 ± 0.0135
100 0.0411 ± 0.0134
200 0.0263 ± 0.0072
300 0.0352 ± 0.0110
400 0.0431 ± 0.0124
500 0.0302 ± 0.0076
600 0.0445 ± 0.0126
700 0.0367 ± 0.0114
800 0.0389 ± 0.0088
900 0.0409 ± 0.0106
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Figure 9: Ablation on training split. Truncation experiments repeated for selected indices as in 3.
Left: training data set to 100. Right: training data set to 500. While we see variation in the scale of
the scores, the relative ordering is preserved across different training splits.

architecture, but the relative ordering of datasets of known variation in diversity remains unchanged.
Changes in architecture may be necessary when dealing with more or less complex data, as well as
settings such as text. Because of this, we stress that RND is best viewed as an intra-setting diversity
measurement because of this.

NLP RND Scores: The numerical RND scores for the experiments described in Figure 2 are pre-
sented in Table 3.

A.8 Visualiation
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Figure 10: Ablation on network used to calculate RND score. Truncation experiments repeated for
selected indices as in 3. Left: Alexnet results (Krizhevsky et al., 2012). Right: ResNet34 Results.
While we see variation in the scores, the relative ordering is preserved across different networks.

Table 3: RND Scores for NLP. Left: Validating RND on NLP with different vocabulary sizes.
Right: Comparing different generated texts to natural text.

Vocabulary Size RND Score

5k 1.0537
10k 1.4256
15k 1.5877
20k 1.6446
25k 1.6860

Model RND Score

GPT-1 1.5561
GPT-2 1.6439

WikiText-2 1.6947
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Figure 11: Visualizing generalization gap during training. Left: Index 0. Right: Index 100
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Figure 12: Visualizing generalization gap during training. Left: Index 200. Right: Index 300
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Figure 13: Visualizing generalization gap during training. Left: Index 400. Right: Index 500
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Figure 14: Visualizing generalization gap during training. Left: Index 600. Right: Index 700
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Figure 15: Visualizing generalization gap during training. Left: Index 800. Right: Index 900

Figure 16: Generalization gap during training on 10 ImageNet classes.
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