
Data Valuation for Acoustic Models in Automatic
Speech Recognition

Ali Raza Syed
Computer Science

The Graduate Center, CUNY
New York, NY, USA

asyed2@gradcenter.cuny.edu

Michael I. Mandel
Computer and Information Science

Brooklyn College, CUNY
Brooklyn, NY, USA

mim@sci.brooklyn.cuny.edu

Abstract

Data valuation is concerned with how to assign value to examples used for training a
supervised learning algorithm. A data valuation scheme holds promise for selection
and curation of high quality data, especially in automatic speech recognition (ASR)
of low-resource languages. Shapley values are a recently proposed method for data
valuation in a machine learning context. While Shapley values can be approximated
for classification models, we investigate the feasibility of these schemes for ASRs
which are performing a structured prediction task. In particular, we show that a
proxy model can be learned for the acoustic model component of an ASR and used
to estimate Shapley values for acoustic frames. We further demonstrate that the
estimated Shapley values estimated from the proxy model provide a strong signal
of example quality at the frame level. In a phonetic classification task on the AN4
dataset, we can identify a high quality subset, comprising 20% of the available
data, which yields near-optimal model performance.

1 Introduction

Data Valuation in Machine Learning is concerned with how to assign value to examples used in
training a given supervised learning algorithm. This is particularly useful for data markets where
individuals or vendors may be compensated for their data (e.g. [9]). Quantifying the value of data can
also be useful for data curation as a means for ranking and selecting a subset of the data for optimal
model performance. This suggests that data valuation may also be used to guide data collection
efforts or develop selection heuristics for an active learner [3, 10]. Automatic speech recognition
(ASR) systems require large amounts of acoustic data which are laborious and expensive to annotate;
for example, a word level transcription of a minute of speech can take as long as 10 minutes [17].
This is especially severe for low-resource languages and dialects with limited access to expert human
annotators [12, 13]. More generally, data valuation is also important for identifying and selecting
high quality examples to provide stronger signals for data-efficient training of speech processing
systems [7, 14]. Thus we are interested in exploring the feasibility of data valuation for selection and
curation of spoken language documents.

The Shapley value [11], arising from cooperative game theory, has been proposed as an equitable
way to allocate value to individual examples based on a model’s performance on a training set [4, 5].
Since the Shapley value is computationally prohibitive (O(2N )) to compute, computations usually
employ Monte-Carlo algorithms for estimation [e.g., 4]. Monte-Carlo algorithms require retraining
a model, several times per example, making such schemes prohibitive for ASR systems which are
expensive to train. Jia et al. [6] have recently proposed a method, based on a proxy nearest neighbors
model, to approximate Shapley values without re-training a model. However, their examples are
limited to neural network classifiers with fixed-length examples. We investigate the feasibility of
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approximating Shapley values for sequential models. Modern ASR systems typically employ an
end-to-end framework with recurrent neural networks for the structured prediction task of mapping
variable length speech to variable length text. The model is comprised of Encoder and Decoder RNNs.
The encoder RNN is an acoustic model that maps a variable length sequence of acoustic frames to a
vector. The decoder RNN maps this vector to a variable length sequence of text. We focus on the
acoustic model component of an ASR to determine if a proxy model is feasible and whether the
approximated Shapley values provide a signal of example utility for the model.

2 Method

2.1 Shapley Values

In cooperative game theory, a coalition of players cooperate toward a common goal to earn some
reward. The Shapley valuation framework provides one method of allocating rewards to individual
players [11] based on their contribution. In the supervised machine learning setting, we think of
training examples as participants in a game. The learning algorithm uses these points to achieve a
reward based on performance measured on a held-out set. Let D = {(xi, yi)}Ni=1 be the training
data and Deval = {(xj , yj)}Neval

j=1 be the held-out data used for evaluation. A learning algorithm A
may take as input any subset S ⊆ D of training examples. The performance of the algorithm A
using examples S is measured by an evaluation function UA(S). The Shapley value σ(xi) of training
example xi is defined as the expected marginal contribution of xi to any subset of the other training
points S ⊆ D \ {xi}:

σ(xi) =
1

N

∑
S⊆D\{xi}

1(
N−1
|S|
)[UA(S ∪ {xi})− UA(S)] (1)

The Shapley value is an allocation scheme that uniquely satisfies some rudimentary fairness axioms
[5, 11]. An advantage of Shapley valuation is that it makes no assumptions about the training data
distribution D or whether the examples are independent or identically distributed.

Approximating Shapley values. Jia et al. [5] proposed an algorithm for exact computation of Shap-
ley values for K-Nearest Neighbor (KNN) models with quasi-linear complexity O(NevalN logN),
where Neval is the number of examples in the heldout set used for evaluating model performance.
Jia et al. [6] proposed learning a proxy KNN model for a neural network by using the learned
representation as inputs, then computing Shapley values for the KNN model. The estimated values
were empirically shown to capture model-based utility of examples in a computer vision task.

2.2 Acoustic Model Proxy

An end-to-end ASR system consists of an encoder RNN, an attention layer, and a decoder RNN.
The encoder RNN can be thought of as learning an acoustic model, while the decoder RNN learns a
language and transition model for outputting sequences of text. We investigate Shapley valuation
for ASR by restricting our attention to the encoder, i.e., the acoustic model component. Given
a speech utterance, we map the constituent acoustic frames to the representation learned by the
encoder network. These encoder embeddings are the inputs to our proxy KNN model. We use
the ground truth phonetic labels for the frames found via forced alignment. Thus, the proxy KNN
approximates an acoustic model learned in the end-to-end architecture, mapping acoustic frames
to phonetic classifications. We evaluate the utility of the proxy acoustic model by determining the
frame classification accuracy on held-out utterances. We evaluate the approximated Shapley values
by examining the model’s performance on the held out frames as we drop the lowest-valued or
highest-valued examples from the training set, as is typical in the data valuation literature.

3 Experiments and Results

3.1 Dataset and Model

We use the AN4 dataset [1] which contains 948 training utterances and 130 test utterances from male
and female speakers. Our inputs are 83-dimensional vectors per 25 ms frames using 80-dimensional
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Figure 1: T-SNE based visualization of acoustic frames based on the representation learned by ASR
encoder network.

log-Mel filterbank coefficients concatenated with a 3-dimensional pitch vector. We employ a state of
the art end-to-end ASR model using hybrid CTC-Attention model [15] using the AN4 recipe from
the open-source ESPnet ASR framework [16].

3.2 Proxy Acoustic Model

We begin by investigating the feasibility of learning a proxy KNN acoustic model for the AN4 dataset.
The ground truth transcriptions for the acoustic frames were found using monophone based forced
alignment from Kaldi [8]. The input features were the encoder representations of the acoustic frames.
Figure 1 shows a T-SNE based visualization of the acoustic frames using these representations
colored by their phonetic classification. The presence of structure in this visualization suggests that
the encoder is learning a phonetic feature space.

We learn a KNN model mapping the encoder based acoustic features to the phonetic labels. Tuning on
a held out set, we determine an optimal value of k = 8 for the KNN model with phonetic classification
accuracy of 77.7% on a test set with unseen speakers. The high performance validates our approach
of learning a proxy KNN for the ASR’s acoustic model.

3.3 Evaluation of Shapley Values

We apply the Proxy KNN-Shapley algorithm [6] to estimate Shapley values for the training data.
To evaluate whether Shapley values measure the utility of an example to the acoustic model, we
following the approach used by the data valuation community. We rank the examples in ascending
order of Shapley value (i.e. from lowest-valued or “worst” examples to highest-valued or “best”
examples). We then evaluate the performance of the model by dropping examples in two different
orders: dropping worst values first and dropping best values first. These curves are compared to
model performance when dropping examples at random.

Dropping acoustic frames. Since our acoustic model classifies frames as phones, we evaluate
our Shapley values by dropping acoustic frames, “re-training” the KNN proxy acoustic model and
measuring its performance on a test set. The performance curves are shown in Figure 2a. The
drop-worst-first curve shows that dropping ∼5% of lowest-valued data yields an improvement in
performance. This suggests that Shapley values are able to identify examples that may be misleading
or difficult to learn, and thus not of utility to the model. It is interesting that we can drop roughly
80% of the data before we begin see a significant drop in model performance. This suggests that
many frames are redundant and convey similar patterns to the model, thus even randomly dropping
frames does not produce a significant drop in performance. This concurs with observations made
for neural net learning by Arpit et al. [2]. About 20% of the available data is sufficient to build an
optimal acoustic model. Moreover, this subset of the data is identified by the (lowest) 80th percentile
of Shapley values. Thus, we find that Shapley valuation of data can be used to curate data effectively.
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(a) We measure proxy test accuracy as we drop data
used for training the KNN model. In drop-worst-
first, we drop data with lowest Shapley values first,
while in drop-best-first, we drop data with highest
Shapley values first. The random baseline shows
results from 5 runs of of dropping random exam-
ples, with the mean performance as a dashed line.
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(b) We compute duration-normalized Shapley val-
ues for utterances, and train and evaluate a KNN
proxy model by dropping entire utterances. Sum-
ming and normalizing Shapley values of frames
to value an utterance does not appear to produce a
meaningful ranking of data.

Figure 2: Model performance curves for evaluating Shapley values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time

0.00015

0.00010

0.00005

0.00000

Sh
ap

le
y 

va
lu

e

SIL

SIL

R
R

AH
AH

B
B

AW
AW

T
T

SIL

SIL

P P

IY

IY

EH
EH

N

N

EY

EY

EH

EH

M
M

SIL
SIL

EH
EH

K
KS

S
SIL
SIL

S

S

EH
EH

V

V
AH
AH

N
N

T
T

IY
IY

T

T
UW

UWSIL

ftmj-an213-b
S I L   R   A H   B   A W   T   S I L   P   I Y   E H   N   E Y   E H   M   S I L   E H   K   S   S I L   S   E H   V   A H   N   T   I Y   T   U W   S I L

(a) Shapley values of frames in an utterance.
The lowest Shapley value occurs for frames
labeled as phoneme “IY”.

(b) Praat grid showing annotated waveform
and spectrogram for the same utterance, with
the low-Shapley “IY” highlighted in yellow.

Figure 3: Examining Shapley values for frames in a selected utterance.

For further analysis, we investigated why some frames received particularly low values. An example
is shown in Figure 3a where one frame with phone label “IY” has a particularly low Shapley value.
We notice from the corresponding annotations in Figure 3b that the frame appears to be mis-labeled.
The waveform suggests that the forced alignment is confused toward the end of the “IY” phone when
it merges into the “EH” phone. This illustrates how Shapley values can be used effectively to identify
and investigate annotations while curating data.

Dropping utterances. The acoustic frames used above are extracted from variable length spoken
utterances. We are interested in learning whether Shapley values for the constituent frames can be
used to value the utterances themselves, since in ASR it is almost always utterances that are labeled
and not isolated acoustic frames. We compute values for utterances by summing up the Shapley
values of the constituent frames and dividing by the number of acoustic frames in the utterance, thus
obtaining a duration-normalized value. Performance curves from dropping utterances are shown in
Figure 2b. Here, the performance of drop-worst-first is similar to that of drop-random. This suggests
that our method of valuing utterances from Shapley values of frames does not yield an effective
ranking. Figure 3a shows very high and very low Shapley values occurring within the same utterance,
making it more difficult to value the entire utterance, thus further work is needed in this regard.

4 Conclusions and Future Work

We have shown the feasibility of using Shapley values for valuation of spoken language data for
automatic speech recognition. We verified that a proxy KNN scheme can be employed to approximate
Shapley values for that KNN classifier, and that dropping frames with the lowest Shapley values
improves model performance. In future work, we will verify that these Shapley values also hold for
the original acoustic model itself and will apply these findings to value variable length utterances for
an end-to-end ASR model.
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Broader Impact

Speech recognition is a key component of voice driven systems which are quickly becoming ubiqui-
tous (e.g., Siri, Alexa). Communities with low-resource languages are under-served by these products
and systems because of the scarcity of statistical and linguistic information as well as lack of expert
annotators. Schemes for valuing data can aid in collection and curation of high quality data for faster
development of ASR systems for low-resource languages. Our method is designed to identify a subset
of data that is most valuable for a given model. It is possible that any bias arising from the original
dataset may also propagate to a model trained on the subset. We have not investigated whether the
subset improves or worsens any resulting model bias.
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