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Abstract

Many active learning and search approaches are intractable for industrial settings
with billions of unlabeled examples. Existing approaches search globally for
the optimal examples to label, scaling linearly or even quadratically with the
unlabeled data. However, in practice, data is often heavily skewed; only a small
fraction of collected data will be relevant for a given learning task. For example,
when identifying rare classes, detecting malicious content, or debugging model
performance, positive examples can appear in less than 1% of the data. In this
work, we exploit this skew in large training datasets to reduce the number of
unlabeled examples considered in each selection round by only looking at the
nearest neighbors to the labeled examples. Empirically, we observe that learned
representations can effectively cluster unseen concepts, making active learning
very effective and substantially reducing the number of viable unlabeled examples.
We evaluate several active learning and search techniques in this setting on two
large-scale datasets: ImageNet and OpenImages. For rare classes, active learning
methods need as little as 0.31% of the labeled data to match the average precision
of full supervision. By limiting active learning methods to only consider the
immediate neighbors of the labeled data as candidates for labeling, we need only
process as little as 1% of the unlabeled data while achieving similar reductions in
labeling costs as the traditional global approach. This process of expanding the
candidate pool with the nearest neighbors of the labeled set can be done efficiently
and reduces the computational complexity of selection by orders of magnitude.

1 Introduction

Large-scale unlabeled datasets contain millions or billions of examples spread over a wide variety of
underlying concepts [6, 30, 29, 26, 20, 16, 25, 1, 4, 17]. Often, these massive datasets skew towards
a relatively small number of common concepts, such as cats, dogs, and people. Rare concepts, such
as harbor seals, may only appear in a handful of examples. However, in many settings, performance
on these rare concepts is critical [3, 26, 13, 10, 14]. For example, harmful or malicious content may
comprise a small percentage of user-generated content, but it can have an outsize impact on the overall
user experience [26]. Similarly, when debugging model behavior for safety-critical applications like
autonomous vehicles or dealing with representational biases in models, obtaining data that captures
rare concepts allows modelers to combat blind spots in model performance [13, 10, 3, 14]. Even a
simple prediction task like stop sign detection can be challenging given the diversity of real-world
data. Stop signs may appear in a variety of conditions (e.g., on a wall or held by a person), be heavily
occluded, or have modifiers (e.g., “Except Right Turns”) [14]. While large-scale datasets are core to
addressing these issues, finding the relevant examples for these long-tail tasks is challenging.
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Active learning has the potential to automate the process of identifying these rare, high value data
points significantly, but existing methods become intractable at this scale. Specifically, the goal of
active learning is to reduce the cost of labeling [23]. To this end, the learning algorithm is allowed to
choose which data to label based on uncertainty (e.g., the entropy of predicted class probabilities)
or other heuristics [22, 23, 18]. Active search is a sub-area focused on finding positive examples
in skewed distributions [8]. Because of a concentrated focus on labeling costs, existing techniques,
such as uncertainty sampling [18] or information density [24], perform multiple selection rounds and
iterate over the entire unlabeled data to identify the optimal example or batch of examples to label
and scale linearly or even quadratically with the size of the unlabeled data. Computational efficiency
is becoming an impediment as the size of datasets and model complexities have increased [2]. Recent
work has tried to address this problem with sophisticated methods to select larger and more diverse
batches of examples in each selection round and reduce the total number of rounds needed to reach
the target labeling budget [21, 15, 7, 19, 11]. Nevertheless, these approaches still scan over all of the
examples in each selection round and can be intractable for large-scale unlabeled datasets.

In this work, we propose Similarity search for Efficient Active Learning and Search (SEALS)
to restrict the candidates considered in each selection round and vastly reduce the computational
complexity of active learning and search methods. Empirically, we find that learned representations
from pre-trained models effectively cluster many unseen and rare concepts. We exploit this latent
structure to improve the computational efficiency of active learning and search methods by only
considering the nearest neighbors of the currently labeled examples in each selection round. Finding
the nearest neighbors for each labeled example in unlabeled data can be performed efficiently with
sublinear retrieval times [5] and sub-second latency on billion-scale datasets [12] for approximate
approaches. While constructing the index for similarity search requires at least a linear pass over the
unlabeled data, this computational cost is effectively amortized over many selection rounds or other
applications. As a result, our SEALS approach enables selection to scale with the size of the labeled
data rather than the size of the unlabeled data, making active learning and search tractable.

We empirically evaluated SEALS for both active learning and search on two large-scale computer
vision datasets: ImageNet [20] and OpenImages [16]. We selected 603 concepts spread across these
datasets that range in prevalence from 0.203% to 0.002% (1 in 50,000) of the training examples. We
evaluated three selection strategies for each concept: max entropy uncertainty sampling (MaxEnt) [18],
information density (ID) [24], and most-likely positive (MLP) [11]. Across datasets, selection
strategies, and the vast majority of concepts, SEALS achieved similar average precision (AP) and
nearly the same recall of the positive examples as the baseline approaches, while reducing the number
of examples considered and the computational complexity by orders of magnitude (Figure 1).

2 Methods

Active learning is an iterative process that begins with a large pool of unlabeled data U =
{x1, . . . ,xn}. Each example is sampled from the space X with an unknown label from the la-
bel space Y = {1, . . . , C} as (xi, yi). We additionally assume a feature extraction function Gz to
embed each xi as a latent variable Gz(xi) = zi and that the C concepts are unequally distributed.
Specifically, there are one or more valuable rare concepts R ⊂ C that appear in less than 1% of the
unlabeled data. For simplicity, we frame this as |R| binary classification problems solved indepen-
dently rather than 1 multi-class classification problem with |R| concepts. Initially, each rare concept
has a small number of positive examples and several negative examples that serve as a labeled seed
set L0

r . The goal of active learning is to take this seed set and select up to a budget of T examples
to label that produces a model AT

r that achieves low error. For each round t in pool-based active
learning, the most informative examples are selected according to the selection strategy φ from a pool
of candidate examples Pr in batches of size b and labeled, as shown in Algorithm 1.

Active search is closely related, so much of the formalism carries over. The critical difference is that
rather than selecting examples to label that minimize error, the goal is to maximize the number of
examples from the target concept r, expressed with the utility function u(Lr) =

∑
(x,y)∈Lr

1{y =

r}). Different selection strategies are favored, but the overall algorithm is the same as Algorithm 1.

In this paper, we consider three selection strategies: max entropy (MaxEnt) uncertainty sam-
pling [18] and information density (ID) [24] for active learning and most-likely positive
(MLP) [28, 27, 11] for active search. Because active learning and search are similar, we evalu-
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ate all the strategies in terms of both the model’s error and the number of positive examples. While
MaxEnt and MLP only require a linear pass over the data, ID scales quadratically because it weights
the informativeness of each example by its similarity to all other examples.

Algorithm 1 BASELINE APPROACH

Input: unlabeled data U , labeled seed set L0
r ,

feature extractor Gz , selection strategy φ(·),
batch size b, labeling budget T

1: Lr = {(Gz(x), y) | (x, y) ∈ L0
r}

2: Pr = {Gz(x) | x ∈ U and (x, ·) 6∈ L0
r}

3: repeat
4: Ar = train(Lr)
5: for 1 to b do
6: z∗ = argmaxz∈Pr

φ(z)

7: Lr = Lr ∪ {(z∗, label(x∗))}
8: Pr = Pr − z∗

9: end for
10: until |Lr| = T

Algorithm 2 SEALS APPROACH

Input: unlabeled data U , labeled seed set L0
r ,

feature extractor Gz , selection strategy φ(·),
batch size b, labeling budget T , k-nearest
neighbors implementation N (·, ·)

1: Lr = {(Gz(x), y) | (x, y) ∈ L0
r}

2: Pr = ∪(z,y)∈Lr
N (z, k)

3: repeat
4: Ar = train(Lr)
5: for 1 to b do
6: z∗ = argmaxz∈Pr

φ(z)

7: Lr = Lr ∪ {(z∗, label(x∗))}
8: Pr = Pr ∪N (z∗, k)− z∗

9: end for
10: until |Lr| = T

Similarity search for efficient active learning and search (SEALS) accelerates the inner loop of
active learning and search by restricting the candidate pool of unlabeled examples Pr. To apply
SEALS, we use an efficient method for similarity search of the embedded examples [5, 12] and
make two modifications to the baseline approach, as shown in Algorithm 2: 1) Pr is restricted to
the nearest neighbors of the labeled examples, and 2) after every example is selected, we find its k
nearest neighbors and update Pr. Restricting the candidate pool Pr to the k-nearest neighbors of the
labeled examples means we only apply the selection strategy to at most k|Lr| examples. This can be
done transparently for many strategies making it applicable to a wide range of active learning and
search methods, even beyond the ones considered here. Finding the k nearest neighbors for each
newly labeled example adds overhead, but this can be calculated efficiently with sublinear retrieval
times [5, 12] for approximate approaches. As a result, the computational complexity of each round
scales with the size of the labeled data rather than the unlabeled data. Generating the embeddings and
indexing the data can be expensive and slow, requiring at least a linear pass over the unlabeled data.
However, this cost is effectively amortized over many rounds, concepts, or other applications.

3 Experiments

3.1 Implementation

Because we are interested in rare concepts, we kept the number of initial positive examples small,
using only 5 positive examples for each concept. Negative examples were randomly selected at a
ratio of 19 negative examples to every positive example to form the seed set L0

r . The slightly higher
number of negatives in the initial seed set improved average precision on the validation set across
datasets. The batch size b for each selection round was 100, and the budget T was 2,000 examples.
For each dataset, we split the data, selected concepts, and created embeddings as detailed below.

ImageNet [20] has 1.28 million training images spread almost equally over 1000-classes. To simulate
rare concepts, we split the data in half, using 500 classes to train the feature extractor Gz and treating
the other 500 classes as unseen concepts. For Gz , we used ResNet-50 [9] but added a bottleneck
layer before the final output to reduce the dimension of the embeddings to 256. We kept all of the
other training hyperparameters the same as in He et al. [9]. We extracted features from the bottleneck
layer and applied l2 normalization. In total, the 500 unseen concepts had 639,906 training examples
that served as the unlabeled pool. We used 50 concepts for validation, leaving the remaining 450
concepts for our final experiments. The number of examples for each concept varied slightly, ranging
from 0.114-0.203% of the unlabeled pool. The validation images were treated as the test set.

OpenImages [16] has 7.34 million images with human-verified labels spread over 19,958 classes,
taken as an unbiased sample from Flickr. However, only 6.82 million images were still available
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Figure 1: Active learning and search on ImageNet (top) and OpenImages (bottom). Across datasets
and strategies, SEALS with k = 100 performed similarly to the baseline approach in terms of both
the error the model achieved for active learning (left) and the recall of positive examples for active
search (right), while only considering a fraction of the data U (middle).

in the training set at the time of writing. As a feature extractor, we took ResNet-50 pre-trained on
all of ImageNet. As rare concepts, we randomly selected 200 classes with between 100 to 6,817
positive training examples. We reviewed the selected classes and removed 47 classes that overlapped
with ImageNet. The remaining classes appeared in 0.002-0.088% of the data. We used the same
hyperparameters as the ImageNet experiments and the predefined test split for evaluation.

3.2 Results

Across selection strategies, datasets, and concepts, SEALS performed similarly to the baseline while
only considering a fraction of the unlabeled data U in the candidate pool Pr, as shown in Figure 1.

ImageNet. For active learning, all baseline and SEALS approaches (k = 100) were within 0.011
mAP of the 0.699 mAP achieved with full supervision. In contrast, random sampling (Random-All)
only achieved 0.436 mAP. MLP-All, MaxEnt-All, and ID-All achieved mAPs of 0.693, 0.695, and
0.688, respectively, while the SEALS equivalents were all within 0.001 mAP at 0.692, 0.695, and
0.688 respectively. The reduced skew from the nearest neighbor expansion of the initial seed set only
accounted for a small part of the improvement, as demonstrated by Random-SEALS.

MLP-All and MLP-SEALS significantly outperformed all of the other selection strategies for active
search. Both approaches recalled over 74% of the positive examples for each concept at 74.5% and
74.2% recall, respectively. MaxEnt-All and MaxEnt-SEALS had a similar gap of 0.4%, labeling
57.2% and 56.8% of positive examples, while ID-All and ID-SEALS were even closer with a gap of
only 0.1% (50.8% vs. 50.9%). In comparison, Random-SEALS and Random-All performed poorly.

OpenImages. For active learning, the gap between the baseline approaches and SEALS widened
slightly for OpenImages. At 2,000 labels per concept (~0.029% of |U |), MaxEnt-All and MLP-
All achieved 0.399 and 0.398 mAP, respectively, while MaxEnt-SEALS and MLP-SEALS both
achieved 0.386 mAP. Increasing k to 1,000 significantly narrowed this gap for MaxEnt-SEALS and
MLP-SEALS, improving mAP to 0.395. Moreover, SEALS made information density tractable on
OpenImages by reducing the candidate pool to 1% of the unlabeled data, whereas ID-All ran for four
days in wall-clock time without completing a single selection round.

For active search, the gap between the baseline approaches and SEALS was even closer on Open-
Images despite considering a much smaller fraction of the overall unlabeled pool. MLP-All, MLP-
SEALS, MaxEnt-SEALS, and MaxEnt-All were all within 0.1% with ~35% recall at 2,000 labels per
concept. ID-SEALS had a lower recall of 29.3% but scaled nearly as well as the linear approaches.
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